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Abstract. Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in
cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis
tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with
GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measure-
ments. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-
DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest
within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To
demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity
measurements conducted from 15 young adults in a two-week period. We also quantified and compared
changes in several brain network metrics between young and older adults, which were in agreement with
those reported by a previous positron emission tomography study. Overall, this study demonstrated that
AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying
NIRS-based, voxel-wise resting-state functional brain networks. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Atlas-guided diffuse optical tomography (atlas-DOT) has under-
gone rapid development in recent years. Custo et al.1 initially
introduced the concept of atlas-DOT, after which it was further
developed with high-density optodes and successfully validated
using computational simulations and functional magnetic
resonance imaging (fMRI) performed on human subjects.2–4

Atlas-DOT utilized a finite element technique with either
subject-specific models3,4 or a standard magnetic resonance
imaging (MRI) brain template (such as ICBM 256) in the
forward calculation.5,6 A significant improvement of accuracy in
image reconstruction and source localization has been achieved
with atlas-DOT.7 More recently, atlas-DOT has been utilized
together with the general linear model analysis, which further
extended its feasibility of measuring hemodynamic changes
in complex brain tasks. Several groups have reported consistent
and accurate results of brain hemodynamic changes under visual
stimulation,7 speech,8 and risk decision-making.5

It is well known that the human brain is naturally organized
into groups of networks, with anatomical brain regions involved
in either individualized processing or integration with other
brain regions, to accomplish different functions. The brain net-
works experience changes in their properties under a variety of

conditions, such as taking on different physical or mental tasks,
facing strong emotions,9 or undergoing normal aging.10–12 Thus,
noninvasive mapping of the human brain’s structural and
functional connectivity enables researchers to better understand
the architecture of the brain and to clearly reveal connectivity
changes in entire brain networks. Increasingly, many neuroi-
maging techniques, such as fMRI, diffusion MRI, electroen-
cephalographic (EEG), and DOT, have been recently used
to investigate large-scale brain networks.13–17 Accordingly,
researchers have developed corresponding mathematical frame-
works that can better model and analyze brain networks for
a variety of imaging modalities. Graph theory analysis (GTA)
is one of the analytical methods developed to examine large-
scale complex brain networks.13–15,18,19 It can provide an uncom-
plicated and yet powerful mathematical means to characterize
the brain networks’ topological properties.

Specifically, GTA is a mathematical method for the analysis
of complex network systems; it finds applications in the mod-
eling of interactions in information, social, and biological sys-
tems. Recently, GTA has been reported in the neuroimaging
literature to analyze resting-state functional connectivity
(RSFC).18,20,21 It depicts a brain network as a graph with differ-
ent anatomical brain regions portrayed as nodes and interactions
between brain regions represented as links. Based on GTA,
a number of studies have found alterations in network param-
eters in aged patients. Liu et al.11 conducted a resting-state
positron emission tomography (PET) study in young and aged*Address all correspondence to: Hanli Liu, E-mail: hanli@uta.edu
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patients and reported a decrease in network efficiency for older
patients, who also maintained a higher clustering coefficient
than younger subjects. This result indicates that the brain network
becomes more random in nature as humans grow older. The
reduction in gray matter as a result of aging has also been
associated with a decrease in global efficiency and increase in
path length for older subjects.22,23 The activities of the default
mode network have been also reported to decrease in older
adults,24 indicating changes in the network’s properties along
with aging. Furthermore, the aging process has been implicated
in alterations in modularity and number of hubs of the brain
network.25,26

In the field of near-infrared spectroscopy (NIRS), a few
recent studies have combined GTAwith channel-wise NIRS and
revealed topological organization and architecture of large-
scale, resting-state human brain cortical networks.27–29 How-
ever, no report combines atlas-DOTwith GTA in brain network
research. In addition, little validation exists for the atlas-DOT
technique in the assessment of RSFC. The difficulties in using
atlas-DOT to form brain networks result from the difficulties of
graph formation, the initial necessary step in GTA. Instead of
using a channel-wise approach, a data set of resting-state atlas-
DOT images is four-dimensional (4-D), consisting of multiple
three-dimensional (3-D) cortical volumes in a time sequence.
Because a reconstructed atlas-DOT image often consists of a
large number of voxels, it is computationally expensive and
lacks an appropriate means to generate the connectivity matrices
needed in GTA. Routinely used techniques to extract regions of
interest (ROIs) in fMRI analysis (such as threshold-, anatomy-,
and function-based ROI30) cannot be directly applied to
atlas-DOT.

In this paper, we introduced an automated voxel classification
(AVC) approach to facilitate graph formation for atlas-DOT
images by identifying or grouping unregulated voxel distribution.
By using a subject-averaged brain template (ICBM 152),31 we
demonstrated that our method could fit for any brain size. We

then provided a solution of voxel classification based on the
automated anatomical labeling (AAL) of activations in 116 seg-
mented structures (AAL 116).32 In this way, the graph formation
was guided by the anatomical structure of the brain. To test our
approach, we conducted a test–retest assessment by measuring
RSFC in 15 young adults. Moreover, we quantified age-related
changes in the chosen brain network and compared our results
with previously published PET-derived reports. Both reproduc-
ibility and cross-modality comparison indicated that our AVC
with atlas-DOT is an efficient and feasible tool for assessing
functional brain networks.

2 Methods and Materials
We developed a three-section data processing strategy to per-
form atlas-DOT with AVC. As represented in Fig. 1, the red,
yellow, and blue dashed lines enclose the three major steps:
data acquisition and preprocessing, atlas-DOT, and graph forma-
tion with AVC, respectively. After generating the brain network
matrices (or adjacency matrices), we performed the group-level
GTAs and statistical analyses to test the reproducibility of brain
connectivity in the young and older adults. All of our analyses
were processed using MATLAB® 2015b (The MathWorks, Inc.,
Natick, Massachusetts).

2.1 Participants, Protocols, Data Acquisition, and
Preprocessing

2.1.1 Participants and protocols

The study participants comprised 15 young adults (ages 25 to
43) recruited from the University of Texas at Arlington and 21
older adults (ages 65 to 92) recruited from the city of Arlington,
Texas.

All subjects were right-handed with normal visual ability. No
subjects reported any known diseases such as musculoskeletal,
neurological, visual, or cardiorespiratory dysfunctions. Written

Fig. 1 The work flow for AVC used with atlas-DOT. The first step (marked by the red dashed line box)
includes the ICBM 152 brain template generation, data acquisition, and data preprocessing. The second
step (marked by the yellow dashed line box), also referred to as atlas-DOT, includes finite element com-
putation for brain atlas, forward modeling, and image reconstruction. The third step (marked by the blue
dashed line box) illustrates graph formation with AVC, which includes volume segmentation using pre-
defined AAL with 116 brain regions (AAL 116), voxel classification and ROIs generation, and formation of
an adjacency matrix by cross-correlation. To validate our approach, a routine GTA with statistic analysis
was followed up to access the local and global network features. Refer to details in the text.
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consent forms were obtained for all participants before the pro-
tocol started. The Institutional Review Board of the University
of Texas at Arlington approved this study.

Before the measurement, all participants were instructed to
sit comfortably in a quiet room with eyes closed and with min-
imal body movements. Our protocol included two repeated
measurements on the young adults with a time separation of
two weeks. We also included one-time recordings for 21 older
adults; however, four older adults’ data were excluded from data
analysis because of head movements, requested recesses, or fail-
ure to complete the protocols. All the measurements of 10-min
RSFC were performed during daytime in the same experiment
room, maintained at a constant temperature, humidity, and light
intensity.

2.1.2 Data acquisition

During the protocol, a continuous wave, multichannel func-
tional NIRS (fNIRS) brain imaging system (Cephalogics,
Massachusetts) was applied to each subject’s forehead to record
cortical hemodynamic alterations during resting state [see
Fig. 2(a)]. The wavelengths used to calculate changes of oxy-
genated hemoglobin (ΔHbO) and deoxygenated hemoglobin
(ΔHbR) were 750 and 850 nm. The sensor array consisted of
18 pairs of two light sources each and 18 detectors with the near-
est interoptode distance of 2.5 cm and the second-nearest inter-
optode distance of 3.5 cm, forming 75 measurement channels
and covering the forehead entirely [see Fig. 2(b)]. To find ana-
tomical locations of the optodes, the international 10–20 system
of electrodes placement was used to coregister the locations of
sources and detectors to a standardized brain atlas. In addition,
the reference points of nasion (Na), inion (In), top (Cz), left ear
(A1), and right ear (A2) in the 10–20 system were measured
using a 3-D digitizer to perform the brain size normalization
in subsequent steps. The region of detection covered approxi-
mately 10 × 20 cm2 surface area in the forehead, which mainly
covered the Brodmann areas 9, 10, and 11. The detected fNIRS
signals were acquired at a sampling frequency of 10.8 Hz.

2.1.3 Data preprocessing

For data preprocessing, bandpass filtering and a global autocor-
relation process were sequentially applied to the channel-wise
raw fNIRS data. Specifically, the bandpass filter chosen in this
study was 0.02 to 0.3 Hz, as suggested by a previous study, to
eliminate the physiological noise generated by heartbeat and

respirations.5 A global signal referencing approach was applied
to the channel-wise fNIRS signals to further eliminate the
unmodeled global physiology or structure noise.33 Specifically,
for each participant, averaging over 75-channel time sequences
generated a global signal. Then, we applied an autocorrelation
approach between the globally averaged signal and signals from
each individual channel to perform global regression. Any chan-
nel-wise signal strongly correlated with the global signal was
considered to contain strong artifacts. Global referencing was
performed in these channels by deducting the global signal
from the individual channel signals.33

2.2 Brain Imaging with Atlas-Guided Diffuse Optical
Tomography

Our previous study5 and many others from the literature2,4,6

extensively introduced the atlas-DOT algorithm. We briefly
describe the method as follows.

First, the predesigned ICBM152 brain template including
176,192 voxels was generated using the MRI structure scan, an
average brain image taken from 152 subjects.31 The size of the
brain template was 229 × 192 × 192 mm3. A careful segmenta-
tion was performed to separate the scalp, skull, gray, and white
matters. A finite element surface mesh was generated for each
segment and later grown inside each of the four segments (i.e.,
scalp, skull, gray, and white matters) to form a complete volume,
constituted with tetrahedrons. A total of 179,162 vertexes were
near-uniformly distributed in Montreal Neurological Institute
(MNI) space. Considering the differences of optical properties
in the real human brain, each segment was assigned a specific
set of optical properties suggested by a previous study.2 Table 1
provides the optical properties of different brain layers.

Second, spatial coregistration and head size normalization
were performed in order to minimize the confounding by the
brain size variation generated as a result of normal aging. As
indicated in Sec. 2.1.2, we performed location reference mea-
surements before acquiring data for both young and older adults.
Specifically, we performed an affine transformation34 between
the standard 10–20 system landmarks in ICBM152 MNI
space and the 3-D digitizer measurements of subject-specific
locations.5,31 The coordinates of projected optodes for each indi-
vidual were then normalized in the standard MNI space in the
ICBM 152 brain atlas. Figure 3(a) shows the normalized optical
source and detector locations plotted with the ICBM 152 cort-
ical image template. The red spots represent the locations of

Fig. 2 Experimental setup and optode/probe geometry: (a) optical probe placement on a partcipant’s
forehead and (b) optical optode geometry. Open circles represent source locations and solid circles
represent detector locations. The source–detector (SD) separation is 2.5 cm, which indicates that the
nearest SD distance is 2.5 cm and the second-nearest SD is 3.5 cm. The total number of SD pairs is 75.
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Table 1 Optical properties of head tissues for modeling.

Scalp Skull Gray matter White matter

750 nm 850 nm 750 nm 850 nm 750 nm 850 nm 750 nm 850 nm

μaðmm−1Þ 0.017 0.019 0.012 0.014 0.018 0.019 0.017 0.021

μ 0
sðmm−1Þ 0.740 0.640 0.940 0.840 0.836 0.673 1.191 1.011

Fig. 3 Illustration of the AVC algorithm. (a) Locations of optical optodes (sources: red dots; detectors:
blue dots) projected on the ICBM 152 brain cotrical template. (b) Spatial distribution of DOT measure-
ment sensitivity after FEM forward modeling, based on the normalized optical optode geometries.
(c) Averaged locations of AAL 116 regions by colored spots. They have been separated into six networks:
default (yellow), frontal–parietal (light blue), occipital (blue), sensorimotor (navy), cingulo-opercular or
limic (orange), and cerebellum (dark red). (d) A 3-D view of the AAL 116 ROIs and the surfaces
based on Ref. 32. (e) AVC categorizes all atlas-DOT voxels interrogated by the fNIRS probes in this
study into six different brain regions as represented by different colors. (f) The locations or coordinates
of the 34 ROIs within the atlas-DOT measured in this study. (g) Time-sequence plots of 34 nodal ΔHbO
values from one subject (subject 01) during a 10-min resting-state period. The x -axis represents time,
and the y -axis represents the oxygenated hemoglobin changes of 34 nodes.
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light sources and the blue spots represent the locations of light
detectors.

Third, the forward modeling of light propagation in the
ICBM152 brain template was performed based on the Rytov
approximation.35,36 The light sensitivity matrix (or Jacobin
matrix) was created by performing the finite element estimation
of light propagation inside the ICBM152 brain atlas using a
finite element method (FEM)-based MATLAB® package called
NIRFAST.37 The optical probe geometry shown in Fig. 3(a)
generated 75 measurement channels. A depth compensation
algorithm with a tested compensation factor of 1.7 was further
applied to the sensitivity matrix to project the reconstructed
DOT images at more accurate brain layers.38 By visually check-
ing the light sensitivity in the forehead [Fig. 3(b)], we observed
that the measurements primarily covered Brodmann 9, 10, 11,
and 46, including the rostrolateral prefrontal cortex, dorsolateral
prefrontal cortex, and parts of the parietal regions.

Last, to recover spatial–temporal changes of light absorp-
tions resulting from brain resting-state hemodynamic activities,
we implemented a 3-D image reconstruction approach repeat-
edly at different time points. We performed inverse image
reconstruction using the Moore–Penrose generalized approach
with Tikhonov regularization.39 The reconstructed images were
4-D matrices with 176,192 spatial voxels and 6480 temporal
points (10 min with a sampling rate of 10.8 Hz). Consequently,
determining absorption changes at two wavelengths led to
reconstructed images of relative changes in ΔHbO concentra-
tions, based on spectral decomposition of the extinction coeffi-
cients for both wavelengths.40

2.3 Graph Formation with Automated Voxel
Classification

To perform GTA, we first needed to generate a proper functional
connectivity matrix called graph formation, in which the ROIs
are classified as nodes, and interactions between nodes are
termed edges.18 Edges in brain networks could be either binary
or weighted. Binary edges indicate the presence or absence of
interactions (“0” for absence or “1” for presence), while
weighted edges represent interaction strength. Using a threshold
can remove weak edges. Edges in functional brain studies are
usually quantified by calculating the correlation coefficient
between two nodes. In functional brain network analysis, graph
formation is usually performed directly from the measured data.
Niu et al.29 introduced a method using the channel-wise time
sequence data as the graph formation input. However, this
method does not work for atlas-DOT, because time-dependent
data in atlas-DOT are not given in channels but in voxels.
In graph formation for fMRI measurements, voxel-wise time-
sequence data are often classified or grouped into certain
clusters based on either anatomical locations or predefined func-
tional ROIs.41 The method we applied here shares a similar idea.
Following a widely accepted anatomical template, namely, the
AAL atlas,32 we presented or projected the 116 anatomical ROIs
on the ICBM 152 brain atlas (see more details in Sec. 2.3.1). We
then performed AVC to identify respective anatomical clusters
on the ICBM 152-based atlas-DOT. Next, we calculated Pearson
correlation coefficients by performing cross-correlations of the
time series between each pair of identified clusters to create
the adjacency matrices. Figure 4 shows a flowchart describing
the overall selection process of AVC.

2.3.1 Anatomical automated labeling with volume
segmentation

Because the ICBM 152 brain atlas provided only an average
anatomical image but lacked detailed anatomical features,32

we had to use the AAL 116-based ROIs to facilitate or define
node definitions in our study (as shown in Fig. 4). While the
AAL 116 ROIs were originally derived from a single-subject
T1-weighted MRI, those ROIs could be still projected or nor-
malized on the ICBM 152 brain template.32 Relatively, there
was little difference in 3-D views of corresponding AAL
ROIs on the ICBM 152 brain template and the single-subject
T1-weighted brain template. More explanation is given in
Appendix A. Specifically, we separated the human brain into
116 anatomical ROIs based on the landmarks of cortical and
subcortical structures, as marked by the AAL 116 ROIs. Further,
these 116 regions were categorized into six brain networks
based on Ref. 22: default mode (yellow), sensorimotor (navy
blue), frontal–parietal lobe (light blue), occipital lobe (blue),
cingulo-opercular/limbic lobe (orange), and cerebellum (dark
red), as identified and presented in Fig. 3(c) using the respective
colors. BrainNet Viewer software42 was used to view or image
the three planes.

2.3.2 Voxel classification to identify the region of interest

To perform graph formation within voxel-wise atlas-DOT
images, we developed an AVC algorithm to assign each DOT
cortical voxel to an appropriate ROI, namely one of the AAL
116 neuroanatomical regions. The selected ROIs then served
as graph nodes for graph formation, followed by cross-correla-
tions of different time sequences between each pair of ROI-
based nodes.

First, both the ICBM152 and the AAL116 templates were
transformed to the same coordinate space. Here, we chose the
MNI coordinates as our standard space coordinate reference.

Fig. 4 Flowchart of AVC.
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Table 2 Node positions based on AAL atlas used in this study

ROI index Network name Anatomical regions and description Label x y z

1 Default mode Left precental gyrus PreCG.L −38.65 −5.68 50.94

2 Default mode Right precental gyrus PreCG.R 41.37 −8.21 52.09

3 Default mode Left superior frontal gyrus (dorsal) SFGdor.L −18.45 34.81 42.20

4 Default mode Right superior frontal gyrus (dorsal) SFGdor.R 21.9 31.12 43.82

5 Default mode Left orbitofrontal cortex (superior) ORBsup.L −16.56 47.32 −13.31

6 Default mode Right orbitofrontal cortex (superior) ORBsup.R 18.49 48.1 −14.02

7 Frontal–parietal Left middle frontal gyrus MFG.L −33.43 32.73 35.46

8 Frontal–parietal Right middle frontal gyrus MFG.R 37.59 33.06 34.04

9 Frontal–parietal Left orbitofrontal cortex (middle) ORBmid.L −30.65 50.43 −9.62

10 Frontal–parietal Right orbitofrontal cortex (middle) ORBmid.R 33.18 52.59 −10.73

11 Frontal–parietal Left inferior frontal gyrus (opercular) IFGoperc.L −48.43 12.73 19.02

12 Frontal–parietal Right inferior frontal gyrus (opercular) IFGoperc.R 50.2 14.98 21.41

13 Frontal–parietal Left inferior frontal gyrus (triangular) IFGtriang.L −45.58 29.91 13.99

14 Frontal–parietal Right inferior frontal gyrus (triangular) IFGtriang.R 50.33 30.16 14.17

15 Frontal–parietal Left orbitofrontal cortex (inferior) ORBinf.L −35.98 30.71 −12.11

16 Frontal–parietal Right orbitofrontal cortex (inferior) ORBinf.R 41.22 32.23 −11.91

17 Sensorimotor-temporal Left rolandic operculum ROL.L −47.16 −8.48 13.95

18 Sensorimotor-temporal Right rolandic operculum ROL.R 52.65 −6.25 14.63

19 Default mode Left superior frontal gyrus (middle) SFGmed.L −4.80 49.17 30.89

20 Default mode Right superior frontal gyrus (middle) SFGmed.R 9.10 50.84 30.22

21 Default mode Left orbitofrontal cortex (medial) ORBsupmed.L −5.17 54.06 −7.40

22 Default mode Right orbitofrontal cortex (medial) ORBsupmed.R 8.16 51.67 −7.13

23 Default mode Left anterior cingulate gyrus ACG.L −4.04 35.4 13.95

24 Default mode Right anterior cingulate gyrus ACG.R 8.46 37.01 15.84

25 Sensorimotor-temporal Left postcentral gyrus PoCG.L −42.46 −22.63 48.92

26 Sensorimotor-temporal Right postcentral gyrus PoCG.R 41.43 −25.49 52.55

27 Sensorimotor-temporal Left supramarginal gyrus SMG.L −55.79 −33.64 30.45

28 Sensorimotor-temporal Right supramarginal gyrus SMG.R 57.61 −31.5 34.48

29 Sensorimotor-temporal Left transverse temporal gyrus HES.L −41.99 −18.88 9.98

30 Sensorimotor-temporal Right transverse temporal gyrus HES.R 45.86 −17.15 10.41

31 Sensorimotor-temporal Left superior temporal gyrus STG.L −53.16 −20.68 7.13

32 Sensorimotor-temporal Right superior temporal gyrus STG.R 58.15 −21.78 6.80

33 Frontal–parietal Left superior temporal pole TPOsup.L −39.88 15.14 −20.18

34 Frontal–parietal Right superior temporal pole TPOsup.R 48.25 14.75 −16.86
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As indicated in Sec. 2.2, an affine transformation was performed
on the ICBM 152 atlas after the FEM forward calculation,
resulting in standard MNI coordinates for each voxel pi (xi,
yi, zi, i ¼ 1; 2; : : : ; n, where n is the total number of voxels).
The MNI coordinates of the original AAL 116 template were
obtained from a previous study.32 Second, the surfaces of
AAL 116 ðTj; j ¼ 1; 2; : : : ; 116Þ template were extracted
using the software ITK,43 shown in Fig. 3(d), and exported
them as vertices (e.g., Xi, Yi, Zi, i ¼ 1; 2; : : : ; n, where n is
the total number of voxels) and faces (triangles). To efficiently
and correctly identify or classify whether the brain voxels were
within a certain AAL region, we followed the algorithm called
“point-in-polyhedron problem.”44 Specifically, the first opera-
tion, the orientation operation, tested whether a point pi falls
to either positive or negative sides of a triangle within Tj
surface. The second operation, point classification operation,
classified whether a point pi is on one of the triangle’s edges
or in its interior. After the voxel classification, we were able to
group or classify all the voxels in an atlas-DOT brain image
into 116 anatomical regions. For example, Fig. 3(e) shows all
atlas-DOT voxels on the cortical template classified into six
different brain regions, represented by different colors.

Second, the voxels were further selected based on the for-
ward model of light diffusion theory. Because the optical mea-
surements in our study did not cover the whole brain volume, the
sensitivity of light interrogation in brain regions deeper than 2 to
3 cm rapidly decayed due to strong light scattering with increas-
ing depth. Therefore, we applied a threshold to eliminate all the
voxels whose optical sensitivity (quantified as optical density,
OD) was less than two standard deviations of the total OD
within an anatomical region. After this selection, the remaining
voxels were combined with the results of voxel classification
from the previous step.

Using this two-step operation, we were able to quantify or
classify 34 ROIs within the 116 anatomical regions. For
graph formation, these 34 ROIs were regarded as nodes.
Table 2 lists network names, anatomical regions or descriptions,
labels, and brain atlas coordinates of these 34 nodes. In addition,
Fig. 3(f) plots the averaged coordinates within the 34 ROIs.
These 34 nodes in our study were included partially within
the default mode network (yellow), frontal–parietal network
(light blue), and sensorimotor network (navy blue). Each

time sequence, averaged over all the voxels within an ROI
(i.e., each of the 34 nodes), was treated as the input of node
information to create the adjacency matrix. As an example,
Fig. 3(g) shows a time-sequence plot of 34 nodal ΔHbO values
from one subject (subject 01). Specifically, the x-axis represents
time within 10 min of a resting-state period and the y-axis rep-
resents oxygenated hemoglobin changes with the node index
from 1 to 34.

2.3.3 Cross-correlation to generate adjacency matrix

Former studies using fNIRS-based GTA to investigate brain net-
works suggested that correlations of brain hemodynamic
changes or fluctuations among different brain regions could re-
present brain functional connectivity.27–29 The same strategy or
rationale was applied in this study to nodal ΔHbO time series,
using the 10-min resting-state fNIRS measurements to establish
the adjacency matrix for each participant. The cross-correlation
between each pair of nodes was performed for the given time
series, as shown in Fig. 3(g), and Pearson correlation coeffi-
cients (R) were computed to form a 34 × 34 adjacency correla-
tion matrix [see Fig. 5(a)]. Note that the color in Fig. 5(a)
denotes the values of the correlation coefficients: blue indicates
a low-correlation coefficient and red represents a high-correla-
tion coefficient. The adjacency matrix was further converted into
a binarized matrix by setting a threshold. The correlation coef-
ficient between node i and j ði; j ¼ 1; 2; : : : ; 34Þ was set to 1,
if the correlation value was larger than the given threshold and
0 otherwise [see Fig. 5(b)]. The edge was defined as func-
tional connections (either ¼ 1 to represent a significant cor-
relation between two nodes or = 0 to represent no significant
correlation).

In principle, different settings or selections on the cross-
correlation threshold will result in a different binarized matrix.
In this study, we applied different thresholds to the adjacency
matrix to obtain a sequence of binary matrices. Specifically,
the sparsity-based approach was utilized as suggested by Niu
et al.29 Sparsity (S) for a fixed graph was defined as the number
of current existing edges in this graph divided by the maximum
possible number of edges in the current graph. In this study, the
range from 0.1 to 0.5 (i.e., 0.1 < S < 0.5, interval ¼ 0.01) was
chosen to be the standard threshold sequence, as a previous

Fig. 5 (a) The adjacency matrix generated by cross-correlation of ΔHbO values at 34 nodes from one
human subject. The x - and y -axes represent the node numbers; red color represents a value with high
correlation between the temporal profiles of two nodes, while blue color represents a low-correlation
coefficient. (b) A binary matrix thresholded by a middle sparsity of 0.25. Note that the diagonal elements
were set to be zero since they were not the actual two-channel correlations. (c) A 3-D view of spatial
representation of nodes and edges generated to show the RSFC. The connected gray lines represent the
fNIRS-derived RSFCmeasured in this study, whereas the unconnected dots show the ROIs classified by
our AVC algorithm.
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study reported.11 Then, the threshold sequence was applied to
the adjacency matrix to generate 41 binarized network matrices
for each subject. Figure 5(c) shows an example from one sub-
ject’s data, revealing a spatial representation of nodes and edges
from one binary matrix with a middle threshold (S ¼ 0.25).
Colors of nodes represent different brain anatomical regions,
whereas gray lines between two nodes represent respective con-
nections. Actually, the connected lines represent the fNIRS-
derived RSFC measured in this study, whereas the unconnected
dots show the ROIs that our AVC algorithm classified.

2.4 Generating Brain Network Matrices Using
Graph Theory Analysis

Based on the adjacency matrices, we further quantified the rest-
ing-state brain network parameters using GTA. Graph theory
metrics for functional brain networks were calculated under
global and local network characteristics. In this study, we did
not include all of the global and local parameters given by
GTA because of the processing load required and the purpose
of this study. We focused on demonstrating our AVC by using a
few major parameters affected by age effects in a previous
study.11 Specifically, a set of global parameters investigated
were global network metrics, including (i) clustering coefficient
(Cp), (ii) shortest path length (Lp), (iii) global efficiency (Eg),
(iv) normalized clustering coefficient (γ), (v) normalized char-
acteristic path length (λ), and (vi) small-world (σ). For the local
parameters, we focused on the hub information, including
(i) nodal degree, (ii) nodal efficiency, and (iii) betweenness
centrality. Appendix B includes detailed descriptions of these
graph metrics.

2.5 Statistical Analysis

We confirmed our classification algorithm by performing two
statistical analyses. First, we performed a test–retest analysis
to evaluate the reproducibility of quantification of the brain net-
works between two measurement visits in 15 young adults. We
also performed a second analysis to compare the differences of
global and local features between young and older adults.
Specifically, we computed global efficiency (Eglob), shortest
path length (Lp), clustering coefficient (Cp), normalized cluster-
ing coefficient (γ), normalized characteristic path length (λ), and
small-world coefficient (σ) for all the groups. Normality was
performed on all measurements, and data without normality
were converted to z-values (Z) transformation before further
analysis.

2.5.1 Evaluating the reproducibility of current approach

The evaluation of reproducibility was performed in both brain
connectivity and graph theory metrics in 15 young adults. First,
group-level functional connectivity adjacency matrices from the
two visits were compared. Specifically, Pearson correlation
coefficients were computed for all pixels in the RSFC matrices.
Then a linear fitting between two visits were performed for all
the pixels. Second, global (i.e., Eglob, Cp, Lp, γ, λ, and σ) and
local [i.e., nodal efficiency (Enod), nodal degree (Ni), and betwe-
enness centrality (Nbc)] parameters of the two visits were
compared. Since the fNIRS measurements were sequentially
performed, a two-sample t-test was taken at each sparsity thresh-
old for all global parameters, resulting in a range of significant

tests along sparsity. A criterion of p < 0.05 was selected to
define statistical significance in this study.

2.5.2 Analysis of the age effect on the global and local
parameters

We further evaluated our method by performing an age-related
analysis between 15 young adults and 21 older adults in both
global (Eglob, Cp, Lp, γ, λ, and σ) and local (nodal efficiency,
nodal degree, and betweenness centrality) brain network
characteristics. The two-sample t-tests for the global metrics
ðEglob; Cp; LpÞ were performed between two groups along all
sparsity values (0.1 < S < 0.5). In addition, regions of hubs
were compared in nodal efficiency (Enod), nodal degree (Ni),
and betweenness centrality (Nbc).

3 Results
We performed careful analysis to test the reproducibility and
feasibility of our AVC method. The reproducibility analysis of
the method was based on the measurements from young adults,
with each of the individuals having participated in the fNIRS
recordings twice within a period of two weeks. The method’s
feasibility analysis tested the age effect on the brain networks
by comparing them between the young and older adults.

3.1 Resting-State Functional Connectivity Matrices

To check the reproducibility of our approach, 10-min rest-state
fNIRS measurements were taken from young adults (n ¼ 15)
twice in two separate experiments. A total number of 75 chan-
nels allowed us to cover and interrogate most of the prefrontal
regions [see Figs. 3(a) and 3(b)]. Our newly developed AVC
algorithm was used resulting in 34 nodes within the cortical
regions reconstructed using atlas-DOT [see Figs. 3(f) and 5(c)].
All the 10-min temporal profiles from the 34 nodes were
extracted [see Fig. 3(g)] and used to create RSFC adjacency
matrices, whose elements or pixels were filled with respective
Pearson correlation coefficients (RRSFC) between each pair of
the 34 nodes. Figures 6(a) and 6(b) show such RSFC matrices
group-averaged over the 15 young adults for visits 1 and 2,
respectively. Visual inspection showed that the two RSFC matri-
ces were consistent with each other in overall distribution of cor-
relation patterns and correlation strengths. More quantitatively,
we compared these two matrices by plotting the two separate
RRSFC sets against each other, as shown in Fig. 6(c). The
comparison demonstrated a linear correlation between the
two visits ðR ¼ 0.58; p < 0.0001Þ. These results demonstrated
that our AVC algorithm was strongly reproducible when used
with atlas-DOT to obtain RSFC matrices.

It is known that GTA allows for the analysis and categoriza-
tion of topological measures of brain networks into two groups:
(a) global network metrics: small-world properties (e.g., cluster-
ing coefficient Cp, characteristic path length Lp, normalized
clustering coefficient c, normalized characteristic path length
l, and small-world s), efficiency parameters (local efficiency
El and global efficiency Eg), modularity Q, hierarchy b, and
assortativity r and (b) nodal characteristics: nodal degree,
nodal efficiency, and nodal betweenness.27 We followed the
same grouping strategy to present our analysis in Sec. 3.2.
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Fig. 7 Global characteristics of the GTA. (a)–(c) indicate the clustering coefficient (Cp), shortest path
length (Lp), and global efficiency (Eg ) quantified from young adults in visit 1 (solid circles) and visit 2
(open circles) and from older adults (pluses). The dashed line on the bottom of panel (a) and
(c) marks the sparsity ranges where significant differences in respective network parameters exist
between two visits (or measurements) of young adults. The solid lines on the bottom of each panel re-
present the sparsity ranges where significant differences in respective network parameters exist between
young and older adults. (d)–(f) indicate the small-world characteristics, including the normalized
characteristic path lengths (λ), normalized clustering coefficient (γ), and small-worldness (σ) quantified
from young adults in visit 1 (solid circles) and visit 2 (open circles) and from older adults (pluses), respec-
tively. The solid lines on the bottom of (d) to (f) have the same meaning as those in (a) to (c).

Fig. 6 RSFC matrices averaged over young adults at (a) visit 1 and (b) visit 2. Each data pixel marks the
Pearson correlation coefficient (RRSFC) calculated between each pair of 34 nodes. Note that the diagonal
elements were set to be zero since they were not actual two-channel correlations. (c) A linear relationship
is illustrated between two RRSFC data sets of young adults at visit 1 (x -axis) and visit 2 (y -axis). The red
line is the fitted line of the two groups ðR ¼ 0.58; p < 0.001Þ, indicating a significant correlation between
the two visits.
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3.2 Global Network Characteristics and Small-World
Features

To further evaluate the reproducibility of our algorithm, we
quantified and compared the global network and small-world
features of the brain networks between the two visits of young
adults and between young and older adults. Figures 7(a) to 7(c)
show the respective values of clustering coefficient (Cp), short-
est path length (Lp), and global efficiency (Eg) of young adults
obtained from two separate measurements along with the cor-
responding readings from the older adults. Two-sample t-tests
for each of the global brain network parameters were performed
at each sparsity value from 0.1 to 0.5, as a previous study
suggested.11

3.2.1 Significant differences in global features between
two visits of young adults

Figures 7(a) to 7(c) present the values of clustering coefficient
(Cp), shortest path length (Lp), and global efficiency (Eg)
determined from two visits of young adults. Overall, results
illustrated a high reproducibility of the global characteristics
of the brain networks. As Figs. 7(a) and 7(c) show, significant
differences in Cp and Eg between visits 1 and 2 existed only
within a short range of the sparsity. Lp showed no significant
difference within the given sparsity range between visits 1
and 2.

3.2.2 Significant differences in global features between
young and older adults

For better comparison, we also plotted global features of the
brain networks from older adults together with those from
the young adults. Figures 7(a) and 7(c) clearly show age-related
changes in Cp and Eg. Quantitatively, the corresponding global
features of young adults from the first visit were used to carry
out statistical assessment. Specifically, older adults revealed a
significantly larger clustering coefficient (Cp) within the spar-
sity range between 0.1 and 0.47 [see Fig. 7(a)]. On the other
hand, young adults had a significantly larger global efficiency
(Eg) than older adults within the sparsity range of 0.1 to 0.31
[see Fig. 7(c)]. Meanwhile, we observed no significant differ-
ence in shortest path length (Lp) between the two age groups
[see Fig. 7(b)]. Our findings were consistent with a previous
study11 that investigated resting-state brain networks in 115
young adults (average age ¼ 35) and 110 older adults
(average age ¼ 54) using PET. Their results indicated a global
efficiency decline with an increase in clustering coefficient in
older adults.11

3.2.3 Small-world functional network

Functional networks of the human brain have small-world
characteristics.21,45 Compared to random networks, the small-
world characteristics in the human brain include large local con-
nectivity and an approximately identical shortest path length
between any two nodes in the network. Figures 7(d) to 7(f)
show the normalized characteristic path length (λ), normalized
clustering coefficient (γ), and small-worldness (σ) taken from
young adults in visit 1, visit 2, and from older adults, respec-
tively. We observed that λ in all three groups approached 1
with sparsity S ¼ 0.1 to 0.5 [see Fig. 7(d)], and so did γ.
Noticeably, no significant difference existed in λ, γ, and
σ between two visits of young adults, revealing excellent

reproducibility in the small-world features between the two
measurements. Regarding age effects on the small-world
characteristics of the brain networks, our results, furthermore,
demonstrated that the young adults have significantly larger λ
than older adults over a range of sparsity (0.12 < S < 0.24).
In addition, the young adults have clearly exhibited larger values
of γ (0.1 < S < 0.41) and σ (0.1 < S < 0.3) over a large range of
sparsity than older adults.

3.3 Reproducibility in Local Graph Parameter

In this study, network hubs were also quantified by nodal degree
(Ni), nodal efficiency (Enod), and betweenness centrality (Nbc).
The nodal metrics were constructed at a sparsity threshold of
0.16, as a previous study suggested,11 to ensure that the net-
works of both young and older adult groups had the same num-
ber of nodes and edges. The hubs were then selected for each
of the three nodal parameters (i.e., Ni, Enod, and Nbc) with
respective values larger than one standard deviation of the cor-
responding average values over all nodes, as previous studies
suggested.27,29 Figures 8(a) to 8(c) demonstrate axial or top
views of the hubs determined from the young adults in visits
1 and 2 and from the older adults for all three nodal metrics of
degree (Ni), efficiency (Enod), and betweenness centrality (Nbc).
As Niu et al.29 indicated, the betweenness centrality was con-
sidered as the major reference for the hub measurements.9

3.3.1 Hubs determined within young adults

As Figs. 8(a) and 8(b) show, the young adults presented a few
consistent and bilateral hub positions in the prefrontal cortex

Fig. 8 Hubs determined from (a) young adults in visit 1, (b) young
adults in visit 2, and (c) older adults. The hubs are presented
based on nodal degree (Ni ), nodal efficiency (Enod), and between-
ness centrality (Nbc). Yellow dots represent the hubs within the default
mode network, light blue dots represent the hubs within the frontal–
parietal network, and dark blue dots represent those within the sen-
sorimotor network. [See Figs. 3(f) and 5(c).]

Neurophotonics 045002-10 Oct–Dec 2016 • Vol. 3(4)

Li et al.: Automated voxel classification used with atlas-guided diffuse optical tomography for assessment. . .



region obtained in both of the two visits. Specifically, we
observed bilateral hub locations in middle frontal gyrus (MFG.
L, MFG.R), superior frontal gyrus (SFGmed.L, SFGmed.R),
and right anterior cingulate gyrus (ACG.R) for the betweenness
centrality in both visits. Young adult visit 1 (not visit 2) exhib-
ited the hub position in the right rolandic operculum (ROL.R),
and young adult visit 2 exhibited the hub position in the left
superior frontal gyrus (SFGdor.L). The nodal degree and nodal
efficiency indicated fewer hubs than the betweenness centrality.
The current study used the betweenness centrality as the marker
of the hubs.

3.3.2 Hubs found differently between young and
older adults

In the older adult group, as shown in Fig. 8(c), two, one, and
three hubs were identified under nodal degree, nodal efficiency,
and betweenness centrality, respectively. In contrast, five, four,
and six hubs were identified from young adults in visit 1;
similarly, five, four, and six hubs were also found in visit 2.
In particular, the two visits identified very similar hubs (four
in nodal degree, four in nodal efficiency, and five in betweenness
centrality). These results revealed an overall decline of hub
numbers in the older adult group.

Furthermore, changes in regional nodal characteristics
between the two age groups were also noted. Specifically,
hubs in default mode networks were observed only on the
right side of the middle frontal gyrus (MFG.R) and the left dor-
solateral region of the medial superior frontal gyrus (SFGmed.
L) in the older adult group, whereas both sides of the middle
frontal gyrus (MFG.L and MFG.R) and the dorsolateral region
(SFGmed.L and SFGmed.R) were observed in the young adult
group. In addition, the bilateral hub pairs (MFG.L, MFG.R,
SFGmed.L, and SFGmed.R) were observed in young adults,
while unilateral hub (SFGmed.L) was observed in older adults

for betweenness centrality. Table 3 summarizes and presents all
the hub locations.

4 Discussion

4.1 Development of Automated Voxel Classification
With Atlas-Guided Diffuse Optical Tomography

Atlas-DOT is an imaging method recently established within the
NIRS-based neuroimaging field.1–8,46 GTA is a network analysis
tool that has been commonly used in functional neuroimaging to
study brain connectivity and networks.13–15,18,19 To date, how-
ever, atlas-DOT and GTA have not been used jointly to extract
or derive large-scale brain connectivity and networks from the
NIRS measurements because of computational challenges posed
by atlas-DOT. Specifically, graph formation in GTA is a difficult
and computationally expensive process for atlas-DOT because
of the large amount of voxels in atlas-DOT images.

The major novelty in our current work was the development
of AVC with atlas-DOT, which affords image processing speed
and localization accuracy in optical brain imaging. Such an
automated classification is critical because it helps to extract
and identify cerebral hemodynamic signals from appropriately
matched anatomical locations, thus improving the accuracy of
interpretations of local and global brain activities. Commonly
used methods for registering NIRS data on a human brain tem-
plate are often based on the EEG 10–20 system,47–49 which is
not directly applicable to the 3-D atlas-DOT images. In addition,
routinely used voxel classification in fMRI is based on an affine
transformation, which converts the voxel space to MNI space,
followed by a voxel matching with a standard MNI structure
template.41 However, this approach works only when the voxels
in the brain images are homogeneously distributed or have the
same equal voxel size. This approach is not applicable to
atlas-DOT for several reasons. First, because atlas-DOT is

Table 3 Regions of hubs in two age groups.

Anatomical regions Abbreviations Betweenness Degree Efficiency

Young adults visit 1 and 2

Left superior frontal gyrus (middle) SFGmed.L ** ** **○

Right superior frontal gyrus (middle) SFGmed.R * * **

Right anterior cingulate gyrus ACG.R ** * **

Left superior frontal gyrus (dorsal) SFGdor.L *

Right superior frontal gyrus (dorsal) SFGdor.R ○

Left middle frontal gyrus MFG.L ** ** **

Right middle frontal gyrus MFG.R **○ **○ **

Left Inferior frontal gyrus IFGtriang.L ○

Right Inferior frontal gyrus IFGtriang.R ○

Right rolandic operculum ROL.R * *

*Marks hub locations from one visit of young adults.
**Marks hub locations from two visits of young adults.
○Marks hub locations from one visit of older adults.
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FEM based, different input parameters (such as the head size,
geometry, and shape) to the atlas model would result in a differ-
ent total number and distribution of voxels in the data space
because of the nature of FEM computation and methodology.
Second, the spatial distribution of optical densities used for
atlas-DOT is variable and heterogeneous, and it depends on
the optical properties of the human head with multiple layers.
Such heterogeneous multilayer structures result in an unpredict-
able number and pattern of voxels in a certain region. Therefore,
the spatial classification method used by fMRI cannot be
transferred directly for voxel classification in atlas-DOT.
Furthermore, no universal template can be generated to match
the FEM voxels versus specific anatomical structures because
each FEM voxel model must be determined according to the
optical probe geometries or setups. Thus, we were motivated to
address this need and develop the current technique, which is
a comprehensive yet efficient solution for the atlas-DOT voxel
classification.

The principle of AVC was based on the “point-in-polyhedron
problem”44 approach. The basic idea was to identify whether
a specific voxel was (i) inside, (ii) outside, or (iii) just on a
particular surface. Specifically, our approach focused on the
location of each atlas-DOT voxel with respect to the surface
of several predefined brain structures. Thus, no matter what
the voxel distribution was, once the voxel coordinates in the
MNI space were assigned, the classification of DOT voxels
to an appropriate anatomical ROI would be automatically
achieved. Because this morphological operation or classification
with atlas-DOT is efficient, it can be applied to other atlas-DOT-
based brain imaging applications.

4.2 Test–Retest Reliability of Resting-State
Functional Connectivity Using Automated Voxel
Classification With Atlas-Guided Diffuse Optical
Tomography

Another innovative aspect of this study was that it demonstrated
the good reproducibility of AVC with atlas-DOT in assessing
RSFC. We found strong consistency between two matrices of
RSFC taken from two separate visits in two weeks (Fig. 6).
A recent report by Niu et al.27 revealed a better reproducibility
of the RSFC correlation, with a higher test–retest correla-
tion coefficient ðr ¼ 0.93; p < 0.0001Þ than ours ðr ¼ 0.58;
p < 0.0001Þ. One possible reason for this difference resulted
from the fact that our two test–retest measurements were sep-
arated by two weeks, whereas the measurements in Ref. 27
were obtained from only the same set of measurements taken
at two time periods.

Furthermore, the global network matrices obtained from the
two visits have shown an overall high consistency [see Figs. 7
and 8], as two-sample t-tests also proved. Specifically, except
for the clustering coefficient in the sparsity range from
0 < S < 0.24, global network features demonstrated good repro-
ducibility along the sparsity range of 0.1 to 0.5. This finding
confirmed that during a resting state, the prefrontal cortex
activities were noticeably repeatable.27 Similar hub locations
observed in both visits also validated the reproducibility of
local network matrices. For example, we observed bilateral net-
work hubs in middle frontal and superior frontal gyrus within
the three nodal metrics of degree, efficiency, and betweenness
centrality in both visits. All these brain regions were consistent
with those reported and observed previously by fMRI and PET
brain network studies.11,18,21

4.3 Comparison of Age Effect on Resting-State
Functional Connectivity Using Automated Voxel
Classification With Atlas-Guided Diffuse Optical
Tomography

Another innovative aspect of this study was that it clearly
revealed the age effect on the resting-state brain network
observed by combining AVC with atlas-DOT. Although both
fMRI and PET have observed and demonstrated age effects
on the brain networks by Lieu et al.11 and Meunier et al.,12 no
report on this topic exists using optical methods. In this study,
we further investigated partial default mode networks and fron-
tal–parietal networks of young adults (ages 25 to 43) and older
adults (ages 65 to 92). Our findings were compatible with pre-
vious studies,11,50,51 which showed a higher global efficiency in
young adults than in older adults. It is believed that the anatomi-
cal alterations of aging are responsible for these changes, espe-
cially after the age of 65.52 Our present results also revealed
a difference in clustering coefficient between the older and
young adults. Similar findings from previous reports11,25 suggest
that a possible reorganization of frontal network occurs as
people age. It is also suggested that information processes are
less economical in older adults, especially in the frontal and tem-
poral cortical and subcortical regions.25 Several other reports
have also indicated an increase of shortest path length with
an increase in age resulting from the loss of long-distance con-
nections and interconnected hubs.25,53 However, we found no
differences in this network metric, possibly because our optical
probe setup covered a limited brain region (i.e., prefrontal), lead-
ing to a shortage of long-distance brain network measurements.

Finally, we have observed a significant decrease in small-
worldness in older adults, implying a degeneration process,
in good agreement with previous studies.11,12,18 Our findings
have also identified several hubs of the brain networks located
within the frontal cortical regions in both age groups, as
reported by several previous publications.11,18 Meanwhile,
a decrease in the number of hubs in the older adults was
observed as compared to the young adults. Specifically, the
nodal betweenness in default mode regions (such as middle
frontal gyrus and superior frontal gyrus) was diminished in
the older adults.

4.4 Consideration of Spatial Leakage

In recent years, much research in the context of EEG- andMEG-
based RSFC has focused on possible confounding effects
resulting from spatial leakage.54–56 This concern is essential
when the measurement data are reconstructed into source-
space. Since such connectivity images or maps are formed by
solving an ill-posed inverse problem, there are inherent corre-
lations among adjacent vertices. Each reconstructed brain vertex
can be expressed as a linear combination of the channel-space
data. This confounding issue is more severe for correction in
MEG- and EEG-based connectivity studies than fNIRS-derived
brain network mappings because the optical sensitivity falls off
much faster (within 1 to 2 cm) than MEG (∼5 to 6 cm).55 It is
still worthwhile to estimate the spatial leakage that may cause
misleading conclusions in our study. For this purpose, we have
added Appendix C that describes our estimation approach to
quantify the spatial leakage. Appendix C presents the results
and draws a basic conclusion. This extra section mainly implies
that the spatial leakage is short-distanced, and the nearby region
within 1 to 2 cm could be affected. Future investigation is
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needed in order to understand better how this distance-related
artifactual connectivity can largely affect the brain network
interpretations. One possible solution for correction of spatial
leakage is to obtain a measurement of spatial leakage artifact
by an “empty-room” recording and then to normalize the actual
human brain data with respect to the artifactual data.55 Another
approach, named geometric correction scheme, was based on
subtraction of the spatial leakage geometry model from the
reconstructed image data and approved efficient to minimize
the spatial leakage effect.54

4.5 Limitations of this Study and Suggestions for
Future Works

Because the light penetration depth through the human brain
tissue (not including scalp nor skull) is not more than 1 cm,
the atlas-DOT technique can image only the brain regions
mainly in gray matter.57 Thus, our atlas-DOT-based graph for-
mation can provide brain network nodes and other metrics
within only 1 cm below the cortical surface. Imaging a deeper
brain layer requires larger separations between optical sources
and detectors, which may lead to a significant signal-to-noise
ratio decrease.58 Suggestions for future studies include simulta-
neous or parallel measurements of EEG recordings and
fNIRS, which may help us better understand the relationship
between neuroelectrical and cerebrovascular functions and
their networks.

Another limitation of this study was associated with physio-
logical noises mixed within the measured fNIRS signals. Such
noises were caused by superficial layers of the human head,
such as the scalp and skull.59,60 To reduce these noises, we
applied a global referencing method, which seemed promising
because our results showed high consistency and reproducibil-
ity. However, we suggest further examining and confirming
the noise effect using other approaches. Future studies could
use a computational method such as independent component
analysis27,61 or an experimental approach such as short-distance
measurement regression2,4,7,8,46,57 to minimize global signal or
noise effects.

It is also highly suggested to increase the number of optodes
in future studies in order to cover the entire cortical region.
Because this study focused primarily on the development of
AVC, we chose to cover only the frontal regions of the subjects’
heads to achieve efficient data acquisition. The cortical region
detected in this study was only partial: about one-quarter of the
entire brain cortical area. Node extraction in this study contained
34 nodal regions (out of 116 regions) in the AAL 116 atlas.
Thus, further studies intending to rigorously determine rest-
ing-state functional brain networks using atlas-DOT should
increase the number of recording optodes and cover the entire
cortical region. In this way, researchers can optimally utilize
AVC with atlas-DOT and obtain the most accurate results of
resting-state brain network analysis.

5 Conclusion
In this study, we introduced an AVC approach that can facilitate
graph formation for atlas-DOT images by grouping unregulated
or unequally sized FEM voxels into anatomically meaningful
ROIs within the human brain. To have an accurate human
brain template for use with AVC, we chose a subject-averaged
brain template (i.e., ICBM 152)31 along with the AAL 116

template32 to mark the brain ROIs. Thus, the graph formation
was guided by the anatomical structure of the brain. To demon-
strate the usefulness of AVC, we conducted a test–retest assess-
ment by measuring RSFC in 15 young adults and quantified
age-related changes in the measured brain network. Our results
derived from AVC with atlas-DOT were in good agreement
with those reported by a previous PET study. Overall, this
study confirmed that AVC with atlas-DOT has great potential to
serve as an efficient and feasible tool to quantify voxel-wise,
resting-state functional brain networks.

Appendix A: Is There Any ROI Difference
Shown on the ICBM 152 Atlas and on
the Single-Subject T1-Weighted AAL
Brain Template?
Originally, the AAL 116 brain template was derived from a sin-
gle subject whose brain was scanned 27 times by T1-weighted
MRI. Specifically, these MRI images were coregistered and
averaged to yield high detailed brain landmarks in MNI space
(namely, Single_subj_T1) (see Ref. 32). On the other hand, the
ICBM 152 brain was created by acquiring MRI over 152 human
brains, followed by unbiased nonlinear averages of the scan
brain images (see Ref. 31). To compare ROIs images based
on these two brain templates, we have plotted AAL-based
116 ROIs in Fig. 9 using (a) the ICBM 152 brain template
[see Fig. 9(a)] and (b) the single-subject T1-weighted brain tem-
plate, which was used to segment AAL 116 ROIs [Fig. 9(b)].
Note that there was very little difference in ROI locations
and/or anatomical variations, except that 3-D views of the ROIs
on ICBM 152 are smoother because of better spatial resolution
of the brain template.

Appendix B: Brain Network Metrics18

For a defined network or graph, N, there are n nodes and k
edges; the global and local network metrics are the output of
the GTA. Using the GRETNA program, we computed the
following graph metrics in our study:

1. Global efficiency (Eglob)

EQ-TARGET;temp:intralink-;x2;326;299Eglob ¼
1

nðn − 1Þ
X

i≠j∈N

1

dði; jÞ :

This is the average inverse shortest path length dði; jÞ
between two node i and j. n is the number of nodes in
the network N.

2. Clustering coefficient (Cp)

EQ-TARGET;temp:intralink-;x2;326;195Cp ¼
Xn

i¼1

2Ni

cnodðiÞ½cnodðiÞ − 1� :

This is the sum of number of existing connections of the
node’s neighbors divided by the number of all their
possible connections. Ni denotes the number of existing
connections among the neighbors of node i, and cnod
represents the number of edges that are connected to
node i.
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3. Characteristic path length (Lp)

EQ-TARGET;temp:intralink-;x2;63;518Lp ¼ 1

nðn − 1Þ
X

i≠j∈G
dði; jÞ:

This is the minimum number of edges that link any two
nodes of the network. dði; jÞ is the shortest path length
between node i and node j.

4. Normalized clustering coefficient (γ)

EQ-TARGET;temp:intralink-;x2;63;415γ ¼ Creal
p ∕Crand

p :

This is the mean of all clustering coefficients over all
nodes in a network. Creal

p and Crand
p are the clustering coef-

ficient in a real network and random networks.

5. Characteristic path length (λ)

EQ-TARGET;temp:intralink-;x2;63;326λ ¼ Lreal
p ∕Lrand

p :

This is the average of the shortest path lengths between
any nodes of the network. Lreal

p and Lrand
p are the character-

istic path length in a real network and random networks.
Not that current study averaged 100 random networks in
the calculation.

6. Small worldness (σ)

EQ-TARGET;temp:intralink-;x2;63;223σ ¼ γ∕λ:

The normalized characteristic clustering coefficient is
divided by the normalized characteristic path length.
A network is considered small-world if σ > 1.

7. Nodal degree (Ni)

EQ-TARGET;temp:intralink-;x2;63;144Ni ¼
X

j≠i∈G
aij:

This is the number of edges linked directly to a particular
node. aij is the i’th row and j’th column element in the
adjacency matrix.

8. Nodal efficiency (Enod)

EQ-TARGET;temp:intralink-;x2;326;518Enod ¼
1

n − 1

X

j≠i∈G

1

dði; jÞ :

It is defined as the inverse of the harmonic mean of the
minimum path length between a particular node and all
other nodes in the network, where dði; jÞ is the shortest
path length between node i and node j.

9. Nodal betweenness centrality (Nbc)

EQ-TARGET;temp:intralink-;x2;326;407Nbc ¼
X

m≠i≠n∈G

δmnðiÞ
δmn

:

This is the number of shortest paths between any two
nodes that run through a particular node (i). δmn is the
total number of shortest paths from node m to node n
and δmnðiÞ is the number of shortest paths from node
m to node n that pass through node i. A high Nbc denotes
large impacts of this node on the information flow over
the whole network.

Appendix C: Estimation of Spatial Leakage in
fNIRS-Derived Functional Connectivity
Mapping
To estimate the spatial leakage in fNIRS-derived functional con-
nectivity, we performed a seed-based “spatial leakage” test on a
set of empty-room data, following the method given in Refs. 54
and 55. A set of 6-min fNIRS temporal data were recorded while
the optical probe was placed on a “dummy head” in a dark room.
The same image reconstruction process was performed on the
raw dummy data to obtain the voxel-wised time sequences. A
seed region was chosen on the left side of the prefrontal lobe [as
marked by black circle in Fig. 10(a)]. The Pearson’s correlation
coefficients, R, between the seed region to all other voxels of
the brain were computed and rendered on the 3-D human
brain template [see Fig. 10(a)], and these R values versus cor-
responding Euclidean distances are also plotted in Fig. 10(b).
This figure shows that the correlation coefficient drops rapidly

Fig. 9 Multiple segments of AAL ROIs shown on (a) the ICBM 152 brain template and (b) the single-
subject T1-weighted brain template.
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within a distance of approximately 16 to 20 mm, revealing that
most of voxels affected by the “spatial leakage” are within 1.5 to
2 cm from the seed site.

To specifically estimate the effect of “spatial leakage” in
our current study, we investigated individual Euclidean distan-
ces across all the 34 AAL ROIs that we used in the network
formation and presented the results in Fig. 11. In this figure,
x- and y-axes are the identified 34 ROIs, while blue color rep-
resents the ROI-to-ROI distance being larger than 20 mm and

yellow color indicates the distance shorter than 20 mm. We can
see that 22 out of 561 (¼34 × 33∕2) ROI-to-ROI distances
are shorter than 20 mm, implying that the “spatial leakage”
effect is not too much significant (about 3.9% of total ROIs).
However, the “spatial leakage” effect could vary depending
on locations of the seed because the light propagation in the
human brain is not homogeneous. More rigorous analysis
should be performed in future studies to confirm this prelimi-
nary conclusion.

Fig. 10 (a) Pearson’s correlation coefficients, R, between the seed region (marked by the black circle)
and all other voxels covered by the optical optodes, were computed and rendered on the 3-D dummy
brain template. (b) It plots the R values versus corresponding Euclidean distances from the seed to
other voxels.

Fig. 11 Distance matrix between each pair of 34 AAL ROIs used for graph formation. Blue color rep-
resents the ROI-to-ROI distance being larger than 20 mm and yellow color indicates the distance shorter
than 20 mm.
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