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Abstract. The attitude parameter is an important state parameter for a long axisymmetric target.
The plane intersection (PI) method is a commonly used method for attitude estimation. However,
this method only uses planes’ information in the object space under a multiple camera system
(more than two cameras simultaneously observing a target). We propose two methods to address
the aforementioned issue. One method involves minimizing the square of the object-space angle
residual (OAR) and the other method involves minimizing the square of the image-space angle
residual (IAR). The linear optimization method is used for the above minimizing problems. The
simulation results demonstrate that the IAR method has higher accuracy than the PI and OAR
methods under multiple and dual camera systems because it incorporates information of a pair of
corresponding image points. Furthermore, our experiments have shown that the linear method is
generally faster, and it has an equivalent accuracy compared to the iterative method. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.OE.59.2.024101]
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1 Introduction

The axis attitude is an important parameter for the motion state analysis, performance measure-
ment, and aerodynamic parameter identification of rockets or missiles. Optical measurement is
the main measurement method of a shooting range due to its noncontact, passive, high frequen-
cies and high accuracy characteristics. Generally, a shooting range uses theodolites to record the
target launching and running process, followed by image processing to obtain the target yaw
angle and the pitch angle.

The pose measurement of the target mainly has the following types of methods: The first
method is to use plane intersection (PI) to obtain the target’s central axis attitude,1 This method
assumes that the target is a symmetrical object, and two cameras are used to simultaneously record
the target. The central axis of the target can then be extracted from the image. Based on the prin-
ciple of light propagation along a straight line, the target axis must be located on a plane consisting
of the optical center and the target central axis in the image. The intersection line of the planes of
the two cameras can be calculated to obtain the target axis representation. This method gives more
accurate measurements than the method based on endpoints, and the form is intuitive. This method
also shows that the longer the target axis in an image, the higher the pose measurement accuracy.
Many researchers have extended this method to other applications.2–4 The accuracy of target axis
extraction in an image plays an important role in improving the accuracy of the PI method.5 This
kind of method can obtain only the target’s central axis attitude, not the target’s position or the roll
angle. The second method is to use the information of the target’s structure and then match its
projection on the image with the contour extracted from the image.6–16 Zhao et al.7 proposed a pose
estimation algorithm based on the inner angle and the triangle constraint. Liu and Hu8 gave a pose
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estimation method based on a monocular image for a rotating solid shape spacecraft that utilized
the inherent characteristics of a spacecraft. However, this method was not applicable for other types
of targets. Peng et al.9,10 proposed some methods for non-cooperative space targets that were based
on only stereo cameras or fusion with laser radar. Becke and Schlegl11 proposed a method for
estimating a target axis based on the contours under monocular or multi-image conditions.
Hanek et al.15 used the linear extreme contours of points, lines, and cylinders to estimate the posi-
tion and orientation of a camera in the world coordinate system. The third method is to use some
cooperation signs (points or lines) on the target. First, we achieve the cooperation signs’ coordinate
in the target’s coordinate system, and then, we solve the pose from the target to the camera’s
coordinate system.17–26 Horn et al.20 utilized the point cloud of the side surface, which achieved
by a laser profile sensor to measure the pose of cylindrical components, but this method cannot
work at high frequencies. Some researchers estimated camera’s pose by the correspondence of
lines or epipolar constraint.21–25 Zhou et al.26 proposed a method to track and estimate the pose
of known rigid objects efficiently in a complex environment, which based on a 3D particle filter
with M-estimation optimization. The fourth method is to directly achieve the point cloud by a laser
profile sensor and then use the point cloud to estimate the target’s attitude.23

For long cylindrical targets, the second method cannot achieve a high precision while the cam-
eras are at a long distance of more than 100 m. For the third method, it is difficult to obtain the
coordinates of the cooperation signs in the target coordinate system with high precision. There are
two main methods for this. One method is based on model labeling, and the other method involves
measurement with a total station after the mark is attached. With the first method, it is difficult to
guarantee the accuracy of labeling when the target is large. In the total station measurement proc-
ess, since it is necessary to move multiple positions to measure all of the feature points, it is easy to
introduce conversion errors and affect the measurement accuracy. The fourth method cannot work
at high frequencies. Later, in this paper, wewill describe the accuracy advantage of the axis method
relative to the feature points-based method in the measurement of the axis attitude for long sym-
metric targets. So, in this paper, we propose a method to improve the PI’s accuracy.

For a multiple camera system (more than two cameras simultaneously observing a target), the
planes given by the cameras from the optical center and the target axis in the image cannot
intersect at the same straight line. This is caused by the inevitable errors of the camera parameter
and the central axis. The solution for the PI method is to derive the direction vectors of the target
using all of the plane equations. Then, the target attitude angle can be derived according to the
definition of decomposition. However, the PI method lacks a geometric explanation when there
are more than two cameras. In this paper, we propose two optimization methods to address this
issue. The first method is based on minimizing the object-space angle residual (OAR), and the
other method is based on minimizing the image-space angle residual (IAR). We also provide
linear solutions and iterative solutions for the OAR and the IAR, called the OARL, IARL, OARI,
and IARI, respectively. The simulation results showed the IAR obtained a higher accuracy than
the PI and the OAR. Furthermore, the IARL was generally faster than the IARI.

2 Plane Intersection Method

2.1 Target Attitude Representation

For an axisymmetric long strip target, the pose of the target is usually determined by its sym-
metry axis direction, which is generally represented by the direction vector or the angles.
Alternatively, the yaw and pitch angles could be used to represent the direction vector, as shown
in Fig. 1. For the shooting range, X faces north, Y faces upward, and Z faces east. OA is the target
axis, OA’ is the projection of OA on the XOZ plane, the angle between the X axis and OA’(ω) is
the yaw angle, and the angle between OA and OA’(φ) is the pitch angle.

2.2 Coordinate System Definition

The world coordinate system W is a right-handed coordinate system, as shown in Fig. 2. The
origin of the camera coordinate system is the optical center. The Z axis is pointing in the positive
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direction of the optical axis, the X axis is perpendicular to the Z axis horizontally to the right, and
the Y axis is perpendicular to the X axis and to the Z axis, whose direction is determined by the
right-handed definition criterion. The origin of the image coordinate system is the upper left
corner.

2.3 Plane Representation by a Single Camera

As shown in Fig. 2, AB is the target axis, C1 and C2 are the optical centers of the two cameras,
A1B1 is the projection of the target axis on camera C1, and A2B2 is the projection of the target
axis on camera C2. Assume that the equation of the target central axis in the i’th image coor-
dinate system is

EQ-TARGET;temp:intralink-;e001;116;206AT
i X ¼ 0; (1)

where Ai ¼ ½ ai bi ci �T and X ¼ ½ x y 1 �T . The image plane can be seen as the z ¼ f
plane in the camera coordinate system, where f is the physical focal length of the camera.
The Z axis of the camera coordinate system passes through the principal point of the image
plane ðCx; CyÞ, so the transformation from the image coordinate system to the camera coordinate
system is determined as follows:

EQ-TARGET;temp:intralink-;e002;116;113

�
xc ¼ ðx − CxÞdx
yc ¼ ðy − CyÞdy ; (2)

Fig. 2 Schematic diagram of PI. The three cameras C1, C2, and C3 observe the same target AB
from different directions, and the projections on the image are A1B1, A2B2, and A3B3, respec-
tively. Theoretically, the three planes C1A1B1, C2A2B2, and C3A3B3 intersect in a straight line.

Fig. 1 Axis direction and attitude angle definition. For the shooting range, X faces north, Y faces
upward, and Z faces east. OA is the target axis, OA’ is the projection of OA on the XOZ plane, the
angle between the X -axis and OA’(ω) is the yaw angle, and the angle between OA and OA’(φ) is
the pitch angle.
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where ðxc; ycÞ is in the camera coordinate system, ðx; yÞ is in the image coordinate system, and
ðdx; dyÞ is the actual physical size of the camera pixel.

The central axis of the target in the image can be expressed in the camera coordinate system
as follows:

EQ-TARGET;temp:intralink-;e003;116;687

�
aiðxc∕dx þ CxÞ þ biðyc∕dy þ CyÞ þ c ¼ 0

z − f ¼ 0
: (3)

The plane equation (composed of the axis and the optical center of the camera) can be defined
as follows:

EQ-TARGET;temp:intralink-;e004;116;617aixc∕dx þ biyc∕dy þ ðaCx þ bCy þ cÞzc∕f ¼ 0: (4)

The equivalent focal length of the camera is abbreviated as follows:

EQ-TARGET;temp:intralink-;e005;116;572

�
Fx ¼ f∕dx;
Fy ¼ f∕dy:

(5)

The plane equation can be summarized as follows:

EQ-TARGET;temp:intralink-;e006;116;514aiFxxc þ biFyyc þ ðaiCx þ biCy þ ciÞzc ¼ 0: (6)

Given the parameter matrix ni ¼ ½ n1 n2 n3 �T ¼ ½ aiFx biFy aiCx þ biCy þ ci �T ,
the plane equation is then rewritten as follows:

EQ-TARGET;temp:intralink-;e007;116;457nTi Pc ¼ 0; (7)

where Pc ¼ ½ xc yc zc �T is a point from the camera coordinate system and n is the normal
vector of the plane. It is assumed that the external parameters of the i’th camera in the world
coordinate system are Ri, ti, where Ri and ti are the rotation matrix and the translation vector
from the world coordinate system to the camera coordinate system. Therefore, the point in the
world coordinate system can be transformed to the camera coordinate system using Eq. (8):

EQ-TARGET;temp:intralink-;e008;116;365Pc ¼ RiPw þ ti; (8)

where Pw ¼ ½ xw yw zw �T is a point in the world coordinate system. The plane equation in
the world coordinate system can then be derived as follows:

EQ-TARGET;temp:intralink-;e009;116;309nTi RiPw þ nTi ti ¼ 0: (9)

So far, the expression of the plane (composed of optical center of the camera and the central
axis of the target in the image) has been obtained in the world coordinate system.

2.4 Principle of Dual Camera Plane Intersection

Supposing that the plane equations of the two cameras are

EQ-TARGET;temp:intralink-;e010;116;204

�
nT1 Pw þ d1 ¼ 0

nT2 Pw þ d2 ¼ 0
; (10)

where n1 and n2 are the normal vectors of the two planes. We do not consider the atmospheric
refraction in this paper, so the direction vector of the intersection line I ¼ ðl; m; nÞT must be
perpendicular to both normal vectors, it can be solved as
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EQ-TARGET;temp:intralink-;e011;116;735

I ¼ nT1 × nT2 ¼

2
64

i j k

n11 n12 n13
n21 n22 n23

3
75: (11)

The yaw angle ω and pitch angle φ of the target can be determined as follows:

EQ-TARGET;temp:intralink-;e012;116;668

�
ω ¼ tan−1 n∕l

φ ¼ tan−1 m∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ n22

p : (12)

It can be seen that the representation of the direction vector obtained by the final intersection
of this method is independent of d and only d for the plane parameter that is related to the
translation vector of the camera. This means that the final direction vector is independent of
the translation vector T. It can be concluded that the target position is related only to the attitude
of the camera.

3 Our Method

3.1 Multicamera Intersection Scenario

As shown in Fig. 2, the three cameras C1, C2, and C3 observe the same target AB from different
directions, and the projections on the image are A1B1, A2B2, and A3B3, respectively.
Theoretically, the three planes C1A1B1, C2A2B2, and C3A3B3 should intersect in a straight
line. However, due to the errors of the camera parameters and the axis, the direction vectors given
by each set of two cameras are not completely consistent. Therefore, it is important to derive
the optimal direction vector.

3.2 Optimization Conditions

This paper proposes two optimization methods for the axis measurement problem. These two
methods are based on minimizing residuals:

1. In a similar manner to the object-space residual method for camera calibration, the target
axis extracted from the image was used as the true value. Firstly, we calculated the angle
between the target central axis and each plane that consisted of the optical center and the
central axis. Secondly, we minimized the square sum of all of the angles. In this paper, this
angle is called the OAR. As shown in Fig. 3, the C2A2B2 plane is the plane composed of
the optical center and the target axis in the image; A′B′ is the target axis, and B′D is the
projection of A′B′ on the plane C2A2B2. α is the OAR.

2. In a similar manner to the image-space residual method for camera calibration, the target
axis was projected to the image plane according to the theoretical model, and the angle
between the projection and the axis extracted on the image plane was considered the angle

Fig. 3 Schematic diagram of the OAR. The C2A2B2 plane is the plane composed of the optical
center and the target axis in the image; AB is the target axis; A′B′ is the measured result of the
target axis, and B′D is the projection of A′B′ on the plane C2A2B2. α is the OAR.
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residual. We also minimized the square sum of all of the angles. In this paper, this term is
called the IAR. As shown in Fig. 4, the C2A2B2 plane is the plane composed of the optical
center and the axis of the camera; A′B′ is the target axis, B2A3 is the projection of A′B′ on
the image plane, and α is the image angle residual.

3.3 Object-Space Angle Residual

3.3.1 Definition of the optimization problem

Supposing that multiple cameras simultaneously observe a target, one can extract the target axis
in the image. The plane equations of the camera’s optical center and the target axis in the image
are expressed in the world coordinate system as follows:

EQ-TARGET;temp:intralink-;e013;116;419nTi Pw þ di ¼ 0: (13)

Supposing that the target axis direction is I ¼ ðl; m; nÞT , then the angle between the central
axis and the plane is

EQ-TARGET;temp:intralink-;e014;116;362αi ¼ sin−1
�

nTi I
knikkIk

�
: (14)

For the convenience of calculation, the linear direction and the plane parameters are
normalized, i.e.,

EQ-TARGET;temp:intralink-;e015;116;292

� knik ¼ 1

kIk ¼ 1
: (15)

Then, αi can be expressed as follows:

EQ-TARGET;temp:intralink-;e016;116;234αi ¼ sin−1ðnTi IÞ: (16)

From the geometric understanding of the PI, one can use this angle as the residual of the
obtained central axis relative to each camera plane. In a similar manner to the spatial residual for
the camera calibration, minimizing this residual can provide the optimal solution:

EQ-TARGET;temp:intralink-;e017;116;165 min
XN
i¼1

α2i ; (17)

where N is the number of cameras. For a small angle, αi;could be approximated by nTi I,
therefore, Eq. (17) could be rewritten as follows:

Fig. 4 Schematic diagram of the IAR. The C2A2B2 plane is the plane composed of the optical
center and the axis of the camera; AB is the target axis; A′B′ is the measured result of the target
axis, B2A3 is the projection of A′B′ on the image plane, and α is the IAR.
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EQ-TARGET;temp:intralink-;e018;116;735 min
XN
i¼1

ðnTi IÞ2; (18)

where ðnTi IÞ is within the interval of ½−1; 1�.

3.3.2 Linear method

The Levenberg–Marquardt22 can be used to solve Eq. (17) and keep low computation efficiency.
The following method provides a linear solution to the minimum value by deriving

EQ-TARGET;temp:intralink-;e019;116;621y ¼
XN
i¼1

ðnTi IÞ2: (19)

Since y is a function of ðl; m; nÞT , letting the partial derivative be 0:

EQ-TARGET;temp:intralink-;e020;116;562

8><
>:

y 0
l ¼

P
N
i¼1ðni1nTi IÞ ¼ 0

y 0
m ¼ P

N
i¼1ðni2nTi IÞ ¼ 0

y 0
n ¼

P
N
i¼1ðni3nTi IÞ ¼ 0

: (20)

We can solve the equations by the singular value decomposition (SVD)27 of the coefficient
matrix.

Theorem 1: It is assumed that ni are the coefficients of the spatial plane nTi Pw þ di ¼ 0. The
necessary and sufficient condition for rank ¼ 2 of the matrix in Eq. (21) is that at least two of
the planes are not parallel, and all of the planes are parallel to the same straight line.

The coefficient matrix of Eq. (20) can be expressed as the form of Eq. (21):

EQ-TARGET;temp:intralink-;e021;116;414½ n1 n2 · · · nN �½ n1 n2 · · · nN �T: (21)

Proof of the theorem’s sufficiency:
Supposing two planes p1 and p2 are not parallel, and n11

n21
; n12n22

; n13n23
are not all equal, then the

matrix
h n1
n2

i
has at least one second-order subdetermination, that is, not 0, i.e., the rank is equal

to 2. One can then conclude that the rank of ½ n1 n2 · · · nN � is larger than or equal to 2.
Since all planes are parallel to the same straight line, all planes can be made across the same

straight line by changing d. Then, all planes form a planar cluster. It can be known from the
properties of planar clusters that other planes can be linearly represented by p1 and p2:

EQ-TARGET;temp:intralink-;e022;116;283ωðnT1Pw þ d1Þ þ μðnT2Pw þ d2Þ ¼ 0: (22)

It can be seen that the rank of ½ n1 n2 · · · nN � is 2. From RðAÞ ¼ RðAT � AÞ,28 the rank
of the formula (21) is 2. The sufficiency certificate is completed.

Next, the necessity of the theorem is proven.
It is known from RðAÞ ¼ RðAT � AÞ that the rank of ½ n1 n2 · · · nN � is 2. This means

that at least two planes are not parallel. Without loss of generality, p1 and p2 are chosen for
the following analysis. All other planes can be represented linearly by p1 and p2, i.e.,

EQ-TARGET;temp:intralink-;e023;116;177ωnT1Pw þ μnT2Pw ¼ 0: (23)

Since D affects only the plane position, it does not affect the plane direction, so all planes are
parallel to the straight line represented by Eq. (24):

EQ-TARGET;temp:intralink-;e024;116;120

�
nT1Pw ¼ 0

nT2Pw ¼ 0
: (24)

The necessity certificate is completed.

Zhong et al.: High accuracy linear method for axis measurement

Optical Engineering 024101-7 February 2020 • Vol. 59(2)



According to the above Theorem 1, if there are only two cameras (not parallel), then the
equation has a unique nonzero solution, and the geometric meaning of the solution is consistent
with the PI method. If there are more than two cameras, unless the condition of Theorem 1 is
satisfied, the system of equations does not have a strict nonzero solution, and only the least-
squares solution ðl; m; nÞT can be obtained as the optimal solution.

3.3.3 Efficiency analysis

The linear method for minimizing the object angle residual is as follows.

1. Solve each plane parameter with time complexity of OðnÞ.
2. Solve the coefficient matrix with time complexity of OðnÞ.
3. Solve the final result in a fixed time.

It can be seen from the above analysis that the method can be solved only by calculating
the coefficient matrix and solving equations with the least square method. Therefore, its time
complexity is OðnÞ.

3.4 Image-Space Angle Residual

3.4.1 Definition of the optimization problem

It is assumed that the final central axis direction is I ¼ ðl; m; nÞT and the axis passes through a
point P0ðx0; y0; z0ÞT in the world coordinate system. It is easy to see that the straight line passes
through the point P1ðx0 þ l; y0 þm; z0 þ nÞT . In the world coordinate system, P0 can be
obtained from the intersection of the pair of corresponding image point on the central axis.
The plane consisting of the straight line and the optical center of the i’th camera can be expressed
as follows:

EQ-TARGET;temp:intralink-;e025;116;395

��������

xw yw zw 1

Oxi Oyi Ozi 1

x0 y0 z0 1

x0 þ l y0 þm z0 þ n 1

��������
¼ 0; (25)

where ðOxi; Oyi; OziÞ is the optical center of the i’th camera. The plane equation after simpli-
fication is

EQ-TARGET;temp:intralink-;e026;116;298nTwiPw þ di ¼ 0; (26)

where nwi is the normal vector of the plane and the subscript w means that it is from the world
coordinate system. It can be seen from Eq. (25) that nwi can be represented linearly by I. Letting
the relationship matrix be M, i.e.,

EQ-TARGET;temp:intralink-;e027;116;227nTwi ¼ ITMi: (27)

It is then easy to prove that M is a full-rank matrix. The transformation matrix from the world

coordinate system to the camera coordinate system is

�
Ri ti
0 1

�
, which is also a full-rank matrix.

The plane is expressed in the camera coordinate system as

EQ-TARGET;temp:intralink-;e028;116;138nTci ¼ nTwi

�
Ri ti
0 1

�
; (28)

where nci is the normal vector of the plane and the subscript c means that it is from the camera
coordinate system. From the image plane equation z ¼ f, the direction of the intersection line is
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Ii ¼ ðnci1; nci2; 0Þ. Then, the angle between the axis of the target in the image plane and the
intersection line is

EQ-TARGET;temp:intralink-;e029;116;711αi ¼ cos−1
�

Ii½ai bi�T
kIikkai bik

�
; (29)

where ai and bi are coefficients of the linear equation ½ ai bi ci �½ x y 1 �T ¼ 0 in the
image plane.

Therefore, the optimized objective function is

EQ-TARGET;temp:intralink-;e030;116;630 min
XN
i¼1

α2i ; (30)

where N is the number of cameras.

3.4.2 Linear method

A method of linearly solving for the minimum value is given by derivation below.
The original expression (30) is complicated, especially the partial derivative expression. The

numerator and the denominator contain ðl; m; nÞT , which cannot be solved linearly. Therefore,
the expression is deformed.

If the two 2D lines I1 ¼ ða1; b1; c1ÞT , I2 ¼ ða2; b2; c2ÞT are nearly parallel, the angle αi ¼
tan−1 a1∕b1 − tan−1 a2∕b2 is a small angle and we have jαij ≈ j tanðαiÞj ¼

��� a1
b 1

−a2
b2

1þa1a2
b1b2

��� ¼��� a1b2−a2b1a1a2þb1b2

���.
For the sake of discussion, we divide a1; b1 and a2; b2 by the larger one, respectively, so that the
maximum value is 1. Then, 1 ≤ ja1a2 þ b1b2j ≈ ja21 þ b21j ≤ 2, so jαij is positively correlated
with ja1b2 − a2b1j. jαj is the absolute value of α. Then, Eq. (31) can be used instead of Eq. (28)
as the optimization solution objective function:

EQ-TARGET;temp:intralink-;e031;116;401 min

�XN
i¼1

ðainci2 − binci1Þ2
�
: (31)

From the previous derivation, nci1; nci2 is a linear function of I ¼ ðl; m; nÞT . Then, the equa-
tion can be recorded as

P
N
i¼1 ðmT

i IÞ2 where mi are the coefficients of I in Eq. (31) and we can
think of it as representing a normal vector to a plane too.

This can be thought of as a function of ðl; m; nÞT . Clearly, this function is a basic elementary
function, so it is continuous and differentiable in the domain of the definition, and the minimum
value must exist. At the point where the minimum value is obtained, the partial derivative of
ðl; m; nÞT exists and it is 0, and the partial derivative is obtained separately:

EQ-TARGET;temp:intralink-;e032;116;264

8><
>:

y 0
l ¼

PN
i¼1ðmi1mT

i IÞ ¼ 0

y 0
m ¼ P

N
i¼1ðmi2mT

i IÞ ¼ 0

y 0
n ¼

P
N
i¼1ðmi3mT

i IÞ ¼ 0

: (32)

We can solve the equations by the SVD27 decomposition of the coefficient matrix.
It can be understood from Theorem 1 that only two planes represented by mi need to be

nonparallel and all planes are parallel to the same line. The rank of this matrix is 2, which indi-
cates that the system of equations has a unique nonzero solution.

Since all planes are parallel to the straight line ðx; y; zÞ, ðxþ l; yþm; zþ nÞ, and only the
optical center of the two cameras and the target line is not coplanar, then the rank of the matrix of
Eq. (32) is 2, and the direction solved for by the image angle residual can be used to obtain the
global minimum.
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3.4.3 Efficiency analysis

The linear method for minimizing the image angle residual is as follows.

1. Solve the 3D coordinate of the corresponding image points with time complexity ofOðnÞ.
2. Solve the straight-line parameters projected onto the image plane with time complexity

of OðnÞ.
3. Solve the coefficient matrix with time complexity of OðnÞ.
4. Find the final result in a fixed time.

It can be seen from the above analysis that the image angle residual method can be solved for
only by calculating the 3D point coordinate, the projection line parameter, the solution coeffi-
cient matrix, and the least squares solution, so the time complexity is OðnÞ, which is the same as
that of the OARL method.

4 Experiments

Because the ground truth was not easy to obtain in the real experiment, we used only the real data
to verify the validity of the algorithm, and then we used the simulation to verify the accuracy of
the algorithm.

4.1 Simulation

4.1.1 Simulation environment

The simulation platform was Windows 7, and the processor was an Intel(R) Core TM i7-
6820HQ 2.7 GHz.

Simulation conditions: The equivalent focal length was (2181.8, 2181.8) and the image main
point was (1023.5, 1023.5). The cameras were arranged in a circle around the target, and the
radius of the circle was 4.5 m. The origin of the world coordinate system was the center of
the circle. The two endpoints of the target axis were ð−0.5;−0.5;−0.5Þ and (1.5, 1.5, 1.5).
The top view of simulation scenario is shown in Fig. 5.

4.1.2 Simulation description

1. The corresponding image points of the image-space residual method were obtained by
adding the same error in the image to the endpoint (0.5, 0.5, 0.5). The corresponding
image points were also affected by the error, ensuring that the image-space residual
method was also solved under the same error conditions.

2. When there were only two cameras, the angle between the two cameras and the target
center was 120 deg.

Fig. 5 The top view of the simulation scenario.
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3. The PI, OARI, OARL, IARI, and IARL were used for each simulation. We used the angle
between the result and the true value to evaluate the accuracy. All of the simulations were
calculated 1000 times and the root mean square (RMS) of the angular error was obtained.
The units were degrees except for simulation condition 7 (see below).

EQ-TARGET;temp:intralink-;e033;116;668E ¼ cos−1
IIt

kIkkItk
: (33)

Simulations were conducted for the following conditions, separately:

1. Number of cameras.
2. Axis extraction error.
3. Error of the camera angle.
4. Error of the camera optical center.
5. Errors of all camera external parameters.
6. All camera external parameters and extraction errors.
7. Solving for all external parameters and extraction errors and comparing the running time.

4.1.3 Simulation results

The different simulations and the related results are given below.
Simulation 1: A Gaussian error with a mean of 0 was added to the optical center of the camera,

with a 10mmRMS value. AGaussian error with a mean of 0 was added to the camera angle, with a
0.5 deg RMS value. A Gaussian error with a mean of 0 was added to the x and y directions of the
two endpoints of the axis with a 1-pixel RMS value. To verify the solution of this method in the
case of only two cameras, the number of cameras ranged from two to nine. The cameras were
arranged on a circle with a radius of 4.5 m, the center of the circle was the origin of the world
coordinate system. The angle was calculated according to the average number of cameras. The
corresponding image points of the IAR were obtained through the intersection of the head points
with the error added. The simulation results for the different numbers of cameras are as follows.

1. If there were only two cameras, the geometric meaning of the OAR method was the same
as that of the PI method, so, the result was the same, and the IAR used the corresponding
image point to minimize the image residual, so, the geometric meaning was inconsistent
and the accuracy was higher.

2. As the number of cameras increased, the accuracy of all of the methods increased gradu-
ally, indicating that these methods effectively utilized the constraints of the multi-camera.

3. It is observable from Table 1 that the accuracy of the OAR and PI was the same, and the
IAR achieved the highest accuracy.

Table 1 Relationship between angle error and number of cameras.

Number PI OARI OARL IARI IARL

2 1.16 — 1.16 — 1.047

3 0.61 0.61 0.61 0.563 0.563

4 0.594 0.594 0.594 0.49 0.49

5 0.473 0.473 0.473 0.381 0.38

6 0.435 0.435 0.435 0.355 0.355

7 0.402 0.402 0.402 0.318 0.318

8 0.371 0.371 0.371 0.293 0.293

9 0.351 0.351 0.351 0.273 0.273

Note: The bold means the best results.
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4. The accuracy of the linear solution and iterative solution of the OAR and the IAR was
the same, which shows that the linear method accuracy was equivalent to the iterative
method.

In the subsequent simulation results, the linear and iterative results were essentially the same.
For the convenience of comparison, only the OARL and IARL are discussed for the following
experiment (except the running time comparison in simulation 7).

Simulation 2: A Gaussian error with a mean of 0 was added to the X and Y directions at the
head and the tail of the axis with 0 to 4 pixels of RMS.We fixed the number of cameras atN ¼ 5.
The simulation results are shown in Fig. 6.

Simulation 3: A Gaussian error with a mean of 0 was added to the three angles of the external
parameter with 0.1 to 1 deg of RMS. The step was 0.05 deg, and the number of cameras was 5.
The simulation results are shown in Fig. 7.

Simulation 4: A Gaussian error with a mean of 0 was added to the three values of the cam-
era’s optical center, with 1 to 50 mm of RMS. The step size was 5 mm and the number of cameras
was 5. The simulation results are shown in Fig. 8.

Simulation 5: A Gaussian error with a mean of 0 was added to the optical center of the
camera, with 1 to 50 mm of RMS, and the step size was 1 mm. A Gaussian error with a mean
of 0 was added to the camera angle, with 0.05 to 2.5 deg of RMS, and the number of cameras was
5. The simulation results are shown in Fig. 9.

Simulation 6: A Gaussian error with a mean of 0 was added to the optical center of the
camera, with 1 to 50 mm of RMS, and the step size was 1 mm. A Gaussian error with a mean
of 0 was added to the camera angle, with 0.05 to 2.5 deg of RMS. A Gaussian error with a mean

Fig. 6 Relationship between the angular error and the axis extraction error. It is clear that the
accuracy of the three methods was similar. As the error increased, the errors of the three methods
increased.

Fig. 7 Relationship between the angular error and the camera angle error (in degrees). It is ap-
parent that the accuracy of the OAR and the PI was same, and the IAR achieved higher accuracy.
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of 0 was added to the x and y directions of the two endpoints of the axis, with 0.1 to 5 pixels of
RMS, and the number of cameras was 5. The simulation results are shown in Fig. 10.

Simulation 7: The same error was added as in case 1. The number of cameras was increased
from 3 to 100. The simulation was run 10,000 times. The results are shown in Fig. 11.

4.1.4 Simulation conclusion

We can conclude from the above simulations:

1. The accuracy of the IAR was higher than that of the OAR and PI.
2. The linear methods presented in this paper achieved consistent accuracy for the iterative

method, and the computation burden was much lower than that of the iterative method.

4.2 Experiment Verification

Next, we will demonstrate the PI’s advantage for the measurement of a long axisymmetric target
with physical experiment 1 and demonstrate the correctness of the method proposed in this paper
with physical experiment 2.

Fig. 9 Relationship between the angular error and the camera external parameter error. For the
case of only an external parameter error, the accuracy of the OAR and PI was same, and the IAR
had a higher accuracy.

Fig. 8 Relationship between the angular error and the optical center error (in millimeters). It is
evident for the case of only the optical center error, the error was 0 since the OAR and the PI
did not use the optical center. However, the IAR method produced a certain error.
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4.2.1 Physical experiment 1

Physical environment. To verify the accurate performance of the central axis intersection
algorithm in the axial attitude measurement of the symmetric target, the design experiment was
verified and the four commonly used methods were tested, namely

OPNP + OI: single camera position calculation method (OPNP17 + OI18).

GOIAMCS: generalized orthogonal iterative Algorithm of multiple camera systems
(GOIAMCS).19

DMPI+AO: dual-camera multiple points intersection 21 + absolutely orientation20

(DMPI + AO).

PI: plane intersection.1

The test scenario was shown in Fig. 12. The target was a cylindrical barrel. The points on the
barrel were used as marker points on the target for pose calculation. The points on the wall and
on the pillar were calibration control points. The optical axes of the two cameras all faced the
barrel, with the center of the barrel as the intersection point. The angle was ∼90 deg, and the
optical center was about 1.5 m from the barrel. The target filled the width of the field of view as
much as possible. A column of points was arranged in the direction of the camera and for 45 deg
on both sides. The main purpose of this was to simultaneously improve the coverage area of
the marker points and ensure the extraction accuracy of the points as much as possible. At the
same time, some points were arranged in the common area of the two cameras for method 3.

Fig. 11 (a) and (b) Relationship between the running time (in seconds) and the number of cam-
eras. (1) The overall running time of the iterative method was higher than that of the other methods,
especially the IARI, and its time-consuming instability was mainly caused by the inconsistent
number of iterations for different random errors. (2) With the increase in the number of cameras,
the cost times of the PI, OARL, and IARL were similar, because all of these methods were linear
methods.

Fig. 10 Relationship between the angular error and the camera external parameters and the axis
extraction error. The accuracy of the OAR and PI was same, and the IAR achieved a higher
accuracy.
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Some cooperative signs were also arranged on the walls around the cameras to convert the con-
trol points and marking points to the same coordinate system when the total station frame was in
two different positions.

The auxiliary measuring equipment consisted of a Leica TS30 and a Leica TM5100A. The
Leica TS30 was used to obtain the coordinates of the control points for calibration and the coor-
dinates of the target’s points for posture calculation. Its accuracy was 0.6 mm. The Leica
TM5100A was used to measure the change in the angle of the barrel. Its accuracy was 0.5 arc
sec, and the accuracy of the vertical lifting platform to which the Leica TM5100Awas attached
was 2 arc sec.

Experimental procedure. The barrel was attached to a platform that could precisely
control the direction of rotation, and a plane mirror was fixed on the barrel as the measuring
reference of the Leica TM5100A.

The measurement steps were as follows:

1. The Leica TS30 was used to measure the markers on the target and the fixed point, and
the fixed point was used to calibrate the camera.

2. The common points on the wall were used to unify the mark points on the target in the
same coordinate system.

3. Four methods were used to measure the initial pose of the target at the initial position.
4. The platform was used to control the barrel to move in the same direction five times, with

1 deg of movement for each motion. The image was captured by two cameras and mea-
sured by the Leica TM5100A at the same time. The measured result of the Leica
TM5100A was used as the true value of the actual motion. The results are presented in
Table 2.

5. Four methods were used to solve for the target pose. The r-matrix obtained by the above
three methods was decomposed to obtain its Y axis direction, and the Y axis direction
angle obtained by the same method in the third step was calculated. For the angle obtained
by the PI method, the Y axis angle obtained by the third step PI method was directly
calculated. To measure the variation as a measure of the accuracy of the measured results,
as presented in Table 2, the unit was degrees.

The RMS of error is
P

5
1 ðIc − ItÞ2, where Ic is the value got by algorithm and It is the truth

value got by the total station. It is evident from Table 2 that the RMS of attitude error measured in
this experimental scenario from low to high was PI, GOIAMCS, DMPI + AO, and OPNP + OI.
Therefore, it can be proven that the PI method had advantages in the axis attitude measurement of
a long symmetric target.

Fig. 12 (a), (b) Physical scene graphs are two images captured by two cameras from different
positions, and the barrel is the target to be measured. The points on the barrel served as marker
points on the target for pose calculation. The points on the wall and on the pillar are calibration
control points.
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4.2.2 Physical experiment 2

To verify the correctness of the algorithm, the method was also verified by physical experiments.

Physical environment. The physical environment for physical experiment 2 was shown in
Fig. 13. The target was placed on the board in the center and the diagonal markers on the side
were the calibration control points. The camera’s pixel size was 4288 × 2848, and the equivalent
focal distance was 5200.

Experimental procedure. The experiment was conducted as follows:

1. The total station was used to obtain the coordinates of the calibration control points in
the total station coordinate system. The total station coordinate system was used as the
world coordinate system. The coordinate system direction was Y vertically upward and
XZ horizontal, and the system constituted a right-hand coordinate system.

2. The same camera was used to take photos from nine different locations. The calibration
control points were extracted from the image and the 3D coordinates were used to calibrate
all of the cameras for a unified world coordinate system.

3. The target central axis was extracted from the image.
4. The PI, OARI, OARL, IARI, and IARL were used separately to obtain the results. All

results are shown in Table 3. It can be seen from the table that the results of the five
methods were essentially the same, which proved the correctness of the method.

Fig. 13 Physical scene graph 2. The target was placed on the board in the center and the diagonal
markers on the side were the calibration control point.

Table 2 True values and algorithm results (unit: degrees).

True value OPNP + OI GOIAMCS DMPI + AO PI

1.0135 1.0573 1.0164 1.0179 1.0146

2.0432 2.0517 2.0361 2.0317 2.0298

3.0672 3.0687 3.05351 3.0466 3.0555

4.0954 4.0718 4.07406 4.0657 4.0846

5.1154 5.0860 5.09529 5.0820 5.0986

RMS of error 0.026 0.015 0.023 0.012

Note: The bold means the best results.
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5 Conclusion

This paper proposed two methods, which were based on minimizing the residuals of the object
angle and image angle. These two methods can provide geometric explanations that are lacking
in the PI method. The simulation demonstrated that in the case of only two cameras, the results of
the OAR method were consistent with those of the PI method, and the IAR method achieved
higher accuracy than the PI and OAR method using corresponding image point information.
It was not difficult to extract a pair of corresponding image points on the target axis in the actual
task, so the method had important practical significance for the case of only two cameras. For a
multiple camera system, the accuracies of the OAR and the PI were the same, and the accuracy of
the IAR was higher than the accuracies of the OAR and the PI. Furthermore, the linear method
was compared with the iterative method. We proved that the IARL was generally faster than
the IARI. The IARL had great significance in the actual task measurement scenario.

However, in the same manner as the PI, all of these proposed methods need the target’s center
axis for measurement, so they are suitable only for the measurement of an axisymmetric target.
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