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Abstract. Our study describes effective techniques to transfer heat away from UV emitters
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1 Introduction

As interest in gas-discharge lasers wanes, the focus is gradually shifting to the development and
study of efficient and intense sources of spontaneous narrow-band UVand VUV radiation, where
the source of radiation is excimer and exciplex molecules excited in dielectric barrier discharge
(DBD) plasma in inert gas or inert gas–halogen mixtures. Sources of this type are commonly
referred to as barrier discharge excilamps, and they are widely used in various fields of science
and technology.1

The efficiency of excimer or exciplex molecule radiation crucially depends on the design of a
quartz bulb and electrodes of an emitter, the pressure and composition of operating gas,1 the
excitation pulse shape,2 and the operating gas temperature. As temperature rises, the efficiency
decreases monotonically because the dimer formation rate declines3 and dimer dissociation effi-
ciency grows.4 Thus to obtain intense-radiation and high-efficiency excilamps, the operating gas
should be rapidly cooled. Emitter overheating shortens the lifetime of electrodes in one-barrier
lamps5 and causes a reduction in halogen concentration as a result of a heterogeneous chemical
reaction between halogen atoms and the quartz wall in two-barrier excilamps.6 This paper aims
to develop and test various ways of cooling actuating media of excilamps excited by electric
barrier discharge.

2 Air Cooling

The simplest and most reliable technique of cooling an emitter is to decrease its temperature by
air. In most cases, the outer surface of an emitter is air-cooled, and/or a strong air stream is passed
through the inner tube if the emitter is co-axial. Figure 1 shows the directions of air streams
coming from two centrifugal fans. One of them pumps air through the inner tube of the emitter,
and the other delivers air to its center, where the air stream splits in two. From there, it runs
throughout the length of the emitter and cools the outer surface. Tarasenko et al. described these
excilamps in Ref. 7.
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Irradiating surfaces often require using reflectors to form a unidirectional radiation flow. In
such cases, it is advisable to ignite discharge on the side (in the segment) where the irradiated
object is, rather than throughout the volume of the emitter (see Fig. 2).

An advantage of emitters with segmental discharge ignition is that they contain a buffer vol-
ume with operating gas, and the lifetime of a sealed-off emitter is increased this way. Segmental
ignition also ensures the stirring of operating gas and prevents local overheating in the discharge
area. The gas is stirred by convective fluxes; Fig. 2 shows their directions.

Heat transfer through an impenetrable wall is accounted for by the difference in temperatures
between the hot and cold substances, the heat transfer coefficient, and the area of the wall sur-
face. When the inner surface of the inner tube of an excilamp is air-cooled, the efficiency of heat
transfer is determined by the initial air-stream temperature, the rate of the airflow, as well as the
area of the cooled tube surface.

As mentioned above, in excimer lamps with two dielectric barriers, operating in a halogen–
inert gas mixture the major factor affecting the lifetime of a sealed-off emitter is the rate of the
heterogeneous chemical reaction between halogen atoms and the quartz wall, which involves the
formation of chlorosiloxanes SinOnCl2n (n ¼ 3 to 5):6

EQ-TARGET;temp:intralink-;e001;116;156nSiO2ðsolidÞ þ 2nClðgasÞ → SinOnCl2nðsolidÞ þ ðn∕2ÞO2ðgasÞ: (1)

The rate constant of the heterogeneous reaction Eq. (1) K depends on the temperature, as
given by the Arrhenius equation:

Fig. 1 Cooling an emitter of a portable excilamp by air: (1) excilamp housing with in-built power
supply, (2) emitter, and (3) centrifugal fans. The arrows show the direction of air streams.

Fig. 2 Segmental discharge ignition in an emitter: (a) irradiation of vertical surface and (b) down-
ward radiation. (1) Quartz tubes of emitter bulb, (2) potential electrode, (3) grounded electrode,
(4) reflector, (5) discharge zone, (6) pulsed power supply, and (7) irradiated surface.
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EQ-TARGET;temp:intralink-;e002;116;735K ¼ A · 10ð−Ea∕kTÞ: (2)

In Eq. (2), A is the pre-exponential factor, Ea is the activation energy, T is the absolute tem-
perature, and k is the Boltzmann constant. Equation (2) indicates that the rate constant and the
rate of the heterogeneous reaction [Eq. (1)] depend exponentially on the temperature.

Spark and streamer gas discharge is associated with a greater chance of local heating of a
fused quartz surface, as compared to diffuse discharge where the density of a current flowing
through discharge plasma is evenly distributed across the wall of the emitter. The study of exci-
lamp excitation regimes showed that higher radiation of exciplex molecules is caused by short-
pulse excitation of operating gas as well as discharge formation via multiple micro-channels,
each consisting of two diffuse cones connected at the apexes.2 This mechanism was studied
by Tarasenko et al.8 This type of discharge is preferable to spark or streamer ones because current
distribution is more even upon contact between diffuse micro-discharges and quartz walls. Local
overheating of a fuse quartz wall is thus prevented.

3 Liquid Cooling

If the level of gas medium excitation is above 50 mW∕cm3, more effective heat transfer is
ensured by cooling by liquid and/or air.9 Systems for liquid heat transfer from lamps can have
a closed- or open-loop design. A closed loop is filled with distilled water or any other insulating
refrigerant pumped through an emitter or a heat exchanger. The open-loop approach, within
which tap water is used as the refrigerant, is the simplest. Yet the closed-loop design has several
advantages: lower water consumption, no salt build-up on the walls of a cooled emitter, and the
insulation of high-voltage electrodes.

When cooling co-axial emitters by a liquid, the refrigerant is usually pumped through the
inner tube to cool the operating gas, whereas radiation is passed through a mesh electrode on the
surface of the outer tube. To cool the outer tube, its surface is covered with radiators, whose
temperature is decreased by water or air (Fig. 3). Thermal paste is applied to areas between the
surface of the emitter and that of a metal radiator to increase the heat transfer coefficient.

Combined double-side cooling by air and water can be accomplished by forcing air through
the inner cavity of the emitter and pumping water through the inner cavities of the emitter-
holding plate (Fig. 3).

In some cases, tap water cannot be used to cool DBD-driven excilamps since undistilled
water is an electrolyte and effectively conduct a sine or square wave high voltage to a grounded
electrode. At the same time, due to the low mobility of current carriers (ions and cations), water
has high resistance when excilamp excided by alternating-polarity micro-second pulses.

This effect was not obtained when using sinusoidal voltage or unipolar-pulsed voltage.

Fig. 3 Double-side cooling of a co-axial emitter: (1) quartz tubes, (2) potential electrode, (3) metal
radiator, (4) water flow, (5) air stream, and (6) pulsed power supply.
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4 Optimization of a Cooling System

In high-power excilamps, which cannot be cooled by liquid, it is recommended to use strong air
streams directed at the outer-tube radiator as well as to pump air rapidly through the inner tube of
an excilamp.

Six types of radiators placed into the inner tube were used in the experiment for optimising
the structure of excilamp cooling systems (Fig. 4). These were: (a) two 50-μm-thick aluminum
foil tubes; (b) metal tubes of a diameter of 10, 15, and 18 mm; (c) a metal tube of a diameter of
15 mm enclosed in several aluminum foil tubes; and (d) an aluminum radiator. A xenon-dimer
excimer lamp with a wavelength of 172 nm had a quartz bulb of ∅40 × 250 mm (the working
length of the surface was 200 mm). The power supplied to the emitter was constant at 280W. The
output power density was measured using a Hamamatsu C9536 meter with an H9535-172 sensor
placed 5 mm away from the surface of the emitter to prevent UV sensor overheating. The gap
between the sensor and the surface was purged with a flow of nitrogen. The temperature of the
outer surface of the emitter was measured by a thermocouple.

Air was pumped through a quartz bulb of a diameter of 23 mm at rates of 10, 20, and
40 l∕min. Figure 5 illustrates the dependence of the temperature of the surface of an excimer
lamp and power density on the airflow rate and operating time for the lamp with the inner elec-
trode made of a metal tube of a diameter of 15 mm. Low-rate air streams cause a quartz bulb to
heat to higher temperatures. This has a significant effect on the radiated power: the higher the rate
of the airflow is, the greater is the power radiated by an excilamp, and therefore, its efficiency.

Fig. 4 Ways to cool the inner tube of a quartz bulb of a co-axial structure: (1) quartz bulb, (2) alu-
minum foil tubes, (3) metal tube, (4) ribbed radiator, and (5) metal spring. (a) two aluminum foil tubes,
(b) solid metal tube, (c) solid metal tube with four aluminum foil tubes, and (d) ribbed metal radiator.

Fig. 5 The dependence of the temperature of an excimer lamp and UV power density (172 nm) on
time and the airflow rate through the inner tube: ▪ and□, 10 l∕min; • and ○, 20 l∕min; and ▴ and
△, 40 l∕min.
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Figure 6 demonstrates the dependence between the temperature of the outer wall of a quartz
bulb and the type of radiator in the inner tube of an emitter. It can be seen that a, b, and c-type
radiators have a relatively low heat removal rate. The temperature of the excilamp reached 150°C
to 170°C as a result.

The most effective cooling in the inner quartz tube of an excimer lamp was observed when
using a ribbed aluminum radiator d. The large area of contact between the quartz glass and the
d-type radiator, the high thermal conductivity of aluminum, and the wide area of the surface
radiator ribs ensure a maximum decrease in the temperature of the excilamp and a relatively
high radiated power (Fig. 7).

Fig. 6 The dependence of the temperature of the outer wall of a Xe2� excilamp on operating time
and the radiator type at air flow rate 20 l∕min: •, radiator a; ▴, radiator b with a 10-mm tube; ▾,
radiator b with a 15-mm tube; ♦, radiator b with an 18-mm tube; ○, radiator c; and ▪, ribbed metal
radiator d .

Fig. 7 The dependence between radiated power (172 nm) and the type of radiator at air flow rate
20 l∕min: •, radiator a; ▴, radiator b with a 10-mm tube; ▾, radiator b with a 15-mm tube; ♦, radiator
b with an 18-mm tube; ○, radiator c; and ▪, ribbed metal radiator d .
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A ribbed radiator caused the temperature of the outer surface of an excimer lamp to stay at or
below 100°C. This efficient cooling technique made it possible to increase the excitation power
of an excimer lamp to 350 W. In this case, after 10 min of the excilamp operation, the temper-
ature of the outer wall of the emitter stabilized at below 160°C. As previously stated, to avoid the
overheating of the UV meter during the experiments, a UV sensor was positioned 5 mm away
from the radiating surface of the excilamp. To obtain the absolute values of the UV power den-
sity, the sensor was briefly placed on the surface of the excilamp. Fig. 8 shows changes in the
temperature of the outer surface of the excilamp and the intensity of its radiation within 10 min.
The maximum power of 117 mW∕cm2 was observed upon switching on the excilamp. After
that, it decreased and flatlined at 104 mW∕cm2.

5 Excimer Lamp with a High VUV Power Density

These findings aided in creating a xenon-dimer-based modular excimer lamp with a high VUV
power density 117 mW∕cm2 (Fig. 9). The excimer lamp consisted of six co-axial emitters

Fig. 8 The dependence of the excimer lamp temperature and UV power density (172 nm) on time
for a ribbed metal radiator d at airflow rate through the inner tube 40 l∕min.

Fig. 9 A Xe2� dimer excimer lamp with six coaxial emitters.
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excited by DBD and mounted on a water-cooled metal radiator. The inner tubes of all six emitters
were cooled by air. The area of the radiating surface was 20 × 20 cm2. The total excitation power
for six emitters was 2.1 kW.

6 Conclusion

This work described several ways to cool excilamps by liquid (water) or air flow and by a mixed
technique. The highest efficiency of a DBD-driven xenon excilamp was obtained when using an
aluminum radiator with water flow inside it to cool the outer wall of the excilamp, as well as when
employing an inner ribbed metal radiator cooled by an intensive airflow. Effective cooling enables
the work of excilamps at a high excitation power per unit of volume without overheating. When
exciplex lamps are used, effective cooling extends the life of the halogen–inert gas mixture.
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