The coupling efficiency between the backscattering light field received by the telescope and the single-mode fiber is one of the important parameters affecting the performance of the all-fiber water vapor Raman lidar system. In the process of using Raman lidar to detect water vapor, the telescope receives the backscattered light signal of the system, which is focused and coupled into the single-mode fiber through the microscopic objective lens. The mode field diameter of the selected single-mode fiber is only 4μm. The weak offset will lead to a decrease in coupling efficiency. When the no-load or space-borne lidar detects the atmosphere, the fluctuation of the airflow may cause the platform vibration to produce a position offset, which will reduce the efficiency of coupling the water vapor Raman scattering echo signal into the single-mode fiber. Based on the above problems, this paper designs a single-mode fiber automatic coupling system. In the closed-loop mode, the controller uses the piezoelectric effect to control the three-axis motion platform to automatically track the maximum brightness in the shooting spot, and realizes the coupling alignment between the single-mode fiber and the nitrogen Raman scattering echo (386.7nm) and the water vapor Raman scattering echo (407.8nm). The coupling efficiency is 49.7%, and the automatic adjustment accuracy is sub-micron. The influence of axial offset and lateral offset on the coupling efficiency is analyzed at the incident light wavelength of 407 nm. This provides a new solution for the continuous, stable and efficient acquisition of water vapor signals by all-fiber detection water vapor Raman lidar system.
The rotational Raman lidar is a valid tool to profile atmospheric temperature. But the fact that its proper operation generally needs a certain collocated device for calibration seriously restricts application in the meteorology and environment fields. We propose an absolute detection technique of atmospheric temperature with the rotational Raman lidar, which is based on the dependence of rotational Raman spectral envelope on temperature. To retrieve atmospheric temperature without calibration, six rotational Raman spectra of nitrogen molecule are chosen from the anti-Strokes branch. A temperature retrieval algorithm is presented and analyzed based on the least square principle. A two-cascade Raman spectroscopic filter is constructed by one first-order diffraction grating, one convex lens, one linear fiber array and 6 groups of fiber Bragg gratings. This lidar is configured with a 300-mJ pulse energy laser and a 250-mm clear aperture telescope. Simulation results show that it can extract the nitrogen molecules rotational Raman spectral lines, and that atmospheric temperature profile obtained through absolute retrieval algorithm can be up to 3.5 km with less than 0.5-K deviation within 17 minutes interval.
The research of ultra-multi-point strain detection is one of the important topics at the forefront of optical fiber sensing technology. A newly ultra-multi-point strain measurement system was designed based on optical time-domain reflectometry (OTDR) and Fiber Bragg Grating. Two distributed feedback (DFB) lasers is proposed as laser source to generate the alternately pulsed light, and transmitted to a serial of fiber Bragg gratings with the same low-reflectivity and bandwidth. By the means of the strength of each reflectance spectrum and its return time of signals, the magnitude and location of strain can be accurately determined, and the numerical simulation shows that more than 1000 FBGs can be multiplexed in OTDR-FBG strain measurement system for a larger strain measurement range. Furthermore, the corresponding driving circuits for nanosecond pulse and temperature control circuits are designed for laser pulse modulation and frequency stabilization control. A OTDR-FBG strain measurement system is developed by using 10 FBGs with the reflectivity of less than 5%, and the system distance resolution of 43 cm is obtained, which verified the feasibility of the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.