In the linear systems, the conventional least mean fourth (LMF) algorithm has faster convergence and lower steady-state error than LMS algorithm, However, in many applications, the censored observations occur frequently. In this paper, a least mean fourth (LMF) algorithm with censored regression is proposed for adaptive filtering. When the identified system possesses a certain extent of sparsity, the least mean fourth algorithm for Censored Regression (CRLMF) algorithm may encounter performance degradation. Therefore, a reweighted zero-attracting LMF algorithm based on the censored regression model (RZA-CRLMF) is proposed further. Simulations are carried out in system identification and echo cancellation scenarios. The results verify the effectiveness of the proposed CRLMF and RZA-CRLMF algorithms. Moreover, in sparse system, the RZA-CRLMF algorithm improves further the filter performance in terms of the convergence speed and the mean squared deviation for the presence of sub-Gaussian noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.