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Preface
This  book  is  a  product  of  shelter-in-place.  During  the  spring  of  2020,  when  COVID-19  was  rampant,  staying  inside  and  isolated  was  the 
recommended way to avoid infection.  Under such circumstances,  the mind seeks activities that  will  keep one occupied and stimulated.  The 
activity of choice for me was writing a book on Fourier transforms using Mathematica.
Fourier transforms is a subject quite familiar to me.  I had taught a graduate-level course on this subject for many years at Stanford, sometimes 
with more than 100 students  coming from departments  across  the  university.  During this  time I  accumulated substantial  lecture  notes,  upon 
which much of this book is based.  However, this book does contain some material that was not included in the classes I taught.
Mathematica  is  a  program  I  used  extensively  in  illustrating  other  books,  but  I  was  by  no  means  an  expert  on  its  capabilities.  I  took  the 
combination  of  Fourier  transforms  and Mathematica  as  a  challenge,  and  indeed  I  learned  a  great  deal  about  this  program  in  the  course  of 
writing this material.  Still I do not consider myself a Mathematica expert, but rather a user who loves to find capabilities of this program that I 
have not yet discovered.  Hopefully the reader of this book will emerge as a reasonably knowledgeable user of the program.
I  learned  Fourier  transforms  first  as  a  graduate  student  in  a  course  on  the  subject  taught  at  Stanford  by  Ron  Bracewell,  a  well-known radio 
astronomer  and  an  innovator  in  many  fields.  In  addition  to  his  well-known  books  on  Fourier  transforms,  he  wrote  a  compendium  on  the 
Eucalyptus trees on the Stanford campus.  He was a true renaissance man.   His course shaped my career, and in gratitude, I am dedicating this 
book to his memory.
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1. Introduction
The Fourier transform is a ubiquitous tool used in most areas of engineering and physical sciences.  The purpose of this book is two-fold: 1) to 
introduce the reader to the properties of Fourier transforms and their uses, and 2)  to introduce the reader to the program Mathematica and to 
demonstrate its use in Fourier analysis. Unlike many other introductory treatments of the Fourier transform, this treatment will focus from the 
start on both one-dimensional (1D) and two-dimensional (2D) transforms, the latter of which play an important role in optics and digital image 
processing, as well as in many other applications.  It is hoped that by the time the reader has completed this book, he or she will have a basic 
familiarity with both Fourier analysis and Mathematica.

1.1  Why Mathematica
Many other texts on Fourier transforms exist, especially notable among them being those by Bracewell [1],  Papoulis [2], and, for a more recent
book, Osgood [3].  This book differs from others in that it is devoted to exploring these topics with the help of the program Mathematica.  The
book has been written as a Mathematica notebook, allowing the reader to interact with the document using the free program Wolfram Player.
Considering the various computational languages available, why have we chosen Mathematica here? The reasons are several. First, Mathemat-
ica seamlessly blends symbolic and numerical mathematics, with incredibly broad knowledge about various functions and capabilities. Second,
Mathematica allows the creation of documents such as this, which include both mathematical computations and formatted text.  Finally, if the
reader has the full  Mathematica  program (rather than just  Wolfram Player),  he or she can change the various commands that are executed in
this ebook and explore other functions, other parameters, etc.
Mathematica is the creation of Stephen Wolfram and the company Wolfram Research.  It was first released in 1988, and has appeared in many
versions. This book was written using version 12.  There are many books that cover the capabilities of Mathematica; see for example, Mathemat-
ica Navigator  by H.  Ruskeepaa,  and The Student's  Introduction to  Mathematica and the Wolfram Language by B.F.  and E.A.  Torrence,  two
among  many.   In  addition,  the  Wolfram  documentation  available  under  the  Mathematica  help  menu  contains  all  you  need  to  know  about
individual commands and their syntax. 
Mathematica  is  an  extremely  powerful  language  with  a  huge  number  of  commands.   In  general,  commands  have  names  that  to  some extent
reveal  their  function.   It  is  possible  to  write  very  dense  and  compact  code  in  this  language,  but  in  this  book  we  have  chosen  to  sacrifice
compactness for understandability.  Thus the calculations presented here can often be written in more compact forms, but those forms will  be
harder to understand than the forms we have used here.
An attempt has been made to limit the number of Mathematica commands used in this book to a subset of the available commands, simply as
an aid to the reader. The syntax and actions of these commands are covered in detail in the references and in the Mathematica Help menu, as
are also the syntax and actions of many other commands that have not been used here.
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There are several reasons for studying Fourier transforms.  First, it is likely to be your most important mathematical tool in problem solving,
regardless of your specialty in physics or engineering.  Second, it provides a valuable bridge between your chosen area of expertise and other
areas of engineering and physics.  To illustrate the ubiquitous nature of Fourier transforms: they are used by circuit designers for studying the
frequency response of circuits; they are used by radio astronomers to form images from interferometric data gathered with antenna arrays; they
are used by spectroscopists to obtain high-resolution spectra in the infrared from interferograms, a method known as Fourier spectroscopy; they
are  used  by  crystallographers  to  find  crystal  structure  using  Fourier  transforms  of  X-ray  diffraction  patterns;  and  they  are  used  by  camera
designers to specify camera performance in terms of spatial frequency response. Even psychologists have used Fourier transforms in the study
of memory and perception.  Almost regardless of your field, you will be able to use your knowledge of Fourier transforms to your advantage.

Back to Contents?

2. Some Useful 1D and 2D Functions
2.1  User-Defined Names for Useful Functions

Our  interest  here  will  be  in  both  1D  and  2D  functions  and  their  transforms.   As  a  start  it  is  useful  to  define  a  group  of  1D  functions.  2D
functions can be built using these functions. By a 1D function, we mean one that is defined on a line. By a 2D function, we mean one that is
defined on a plane.  The following table provides a set of 1D functions that have user-defined names (all beginning with lower-case letters) and
the  corresponding  Mathematica  code  that  defines  those  functions.   Again,  these  definitions  are  included  in  an  initialization  cell  near  the
beginning of this document. 

rect[x_] := UnitBox[x];
sinc[x_] := SincPi * x;

step[x_] := UnitStep[x];
sgn[x_] := Sign[x];
gaus[x_] := Exp-Pi * x^2;

jinc[x_] := 2 * BesselJ1, Pi * x  Pi * x;

tri[x_] := UnitTriangle[x];
rtri[x_] := rect[x - 1 / 2] * UnitTriangle[x];
δ[x_] := DiracDelta[x];
comb[x_] := DiracComb[x];

A  table  showing  plots  of  most  of  these  functions  follows.  The  functions  δ(x)  and  comb(x)  will  be  discussed  in  Section  2.5.  Note  that  the
command to plot such functions is

Plot[g[x], {x, lower, upper}, PlotRange → All],

where lower and upper are the lower and upper limits, respectively, for which the function should be plotted.

rect[x] sinc[x]

tri[x] step[x]

sgn[x] gaus[x]

rtri[x] jinc[x]
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and in two dimensions

 
-∞

∞
g(x, y) comb(x, y) ⅆ x ⅆ y = 

m=-∞

∞


n=-∞

∞

g(n, m).

An important important property is that comb(ax) =
1

1a2
comb

x

a
.

Back to Contents?

3. Definition of the Continuous Fourier Transform
3.1  The 1D Fourier Transform and Inverse Transform

We begin with a discussion of 1D Fourier transforms.  We start with a function g(x) defined on the x axis, and calculate its 1D transform 4(u)
defined  on  the  u  axis.    There  are  several  possible  definitions  of  the  Fourier  transform,  differing  through  scaling  constants  applied  to  the
transform and/or to its argument.  Mathematica defines the 1D Fourier transform 4(u) of the function g(x) through the equation

4(u) =
b

(2 π)1-a 
-∞

∞
g(x) exp(ⅈ b u x) ⅆ x ,

where  a  and b  are  the  scaling  constants  to  be  chosen.   The symbol  ⅈ  represents  the  imaginary  constant  -1 ,  while   a  and b  are  called  the
Fourier parameters.  The symbol x may represent time, in which case the symbol u represents temporal frequency, measured in hertz (Hz).
The definition of the transform to be used here and throughout is one that chooses the constants (a, b) = (0, –2π), yielding 

4(u) = ∫-∞
∞ g(x) exp(-ⅈ 2 π u x) ⅆ x .

This equation now has to be expressed in Mathematica language.  The expression that performs this operation on an input function g(x) is 

:[u_] := FourierTransformg[x], x, u, FourierParameters → 0, -2 * Pi

Notice the underbar following u in the definition of the function 4, as is required in any definition of a function in Mathematica.  Notice also
the delayed equality symbol :=, which means that the expression will not be evaluated until it is needed in later code.
Paralleling the definition of the Fourier transform is that of the inverse Fourier transform.  Mathematica’s definition of this quantity is

g(x)=
b

(2 π)1 +a ∫-∞
∞ 4(u) exp (–ⅈ b u x) ⅆu.

To return from 4 to g given our definition of the transform requires that we again choose the Fourier parameters for the inverse transform as {a,
b} = {0, –2π}. We then obtain

g(x) = 
-∞

∞
4(u) exp(ⅈ 2 π u x) ⅆu.

This equation can be thought of as expressing g(x) as a superposition of an infinite number of weighted complex exponentials of the form 4(u)
exp(ⅈ 2 π u x), where 4(u) is the weighting function for the complex exponential with frequency u. The Mathematica command to perform the
inverse Fourier transform is given by

g[x_] := InverseFourierTransform:[u], u, x, FourierParameters -> 0, -2 * Pi

For all but the most unusual functions, the inverse Fourier transform of the Fourier transform of a function g(x) returns the function g(x), except
at points of discontinuity of g, where the average of the values of g from the right and from the left of the discontinuity is obtained.  Discussion
of the conditions for successful inversion of the Fourier transform by the inverse Fourier transform will follow later.

3.2  The 2D Fourier Transform and Inverse Transform
In  this  text,  we  shall  often  consider  2D  functions  that  are  defined  on  an  (x,  y)  spatial  plane.   The  Fourier  transforms  of  such  functions  are
likewise  2D  functions  defined  on  a  frequency  plane.   Again  there  are  several  different  definitions  of  the  2D  transform  that  differ  from  one
another  through  scaling  of  the  transform  or  the  frequency  variables,  or  both.   Mathematica  defines  the  2D  Fourier  transform  through  the
equation
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4. Convolutions and Correlations
In many fields of physics and engineering, the convolution integral and the correlation integral play important roles in analysis.  In this chapter 
we explore these integrals in one and two dimensions, and discuss their implementations in Mathematica.

4.1 Convolution Integrals
The convolution g(x) between two functions h(x) and f(x) is defined by the integral 

g(x) = 
-∞

∞
f (ξ) h(x - ξ) ⅆ ξ = f (x)* h(x).

Here the symbol ξ is simply a dummy variable of integration, and the symbol * stands for convolution between the two stated functions. (Do
not confuse this symbol with the multiplication symbol used in Mathematica code.) Note that one of the functions, in this case h(ξ), has been
reversed left to right and shifted to be centered at ξ = x.  The same resulting g(x) is obtained if f(ξ), rather than h(ξ), is reversed and shifted.
Consider the case of functions f(x) = gaus(x) and h(ξ) = rtri(x).  Both functions are shown below:

Visualizing  the  area  under  the  convolution  integral  can  be  accomplished  with  the  Mathematica  command  Manipulate.   The  form of  this
command is

Manipulateexpression, a, amin, amax.

Note that to use this command, you must enable “Dynamic Updating” in the Evaluation menu.  If the resulting plot shows only an outline of the
coordinate system, highlight the cell marker for the command on the right and execute the command by pressing shift-return, assuming you are
using the full Mathematica program. 
This  expression  allows  one,  for  example,  to  plot  a  function  with  a  variable  parameter,  and  to  visualize  the  changes  in  the  function  as  the
parameter is varied.  In the present case, the command needed is
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In[!]:= ManipulatePlotgaus[x], rtri[-x + a], gaus[x] * rtri[-x + a], {x, -1, 2},

PlotRange → All, ExclusionsStyle → Automatic, AxesLabel → {x, None},
Filling → Axis, FillingStyle → Automatic, {a, -0.9, 1.6}, SaveDefinitions → True

Out[!]=

a

In this plot, axis labels are explicitly called for, and the curves are colored down to the x axis. By moving the button above the plot, the overlap
of the two functions being convolved changes, and the reader can see the integrand of the convolution integral plotted.
Mathematica has a command for convolving two functions f and h:

g[x_] = Convolvef[ξ], h[ξ], ξ, x.

As an example, consider the convolution of the right half-triangle with a scaled version of itself:

In[!]:= g[x_] = Convolvertri[2 * ξ], rtri[ξ], ξ, x

Out[!]=

1
24

(7 - 6 x) 1
2
< x < 1

- 1
24

(-3 + 2 x)3 1 ≤ x < 3
2

1
6
x 6 - 9 x + 2 x2 0 < x ≤ 1

2

0 True

The result is quite complex, but it can be visualized with a plot:

In[!]:= Plot[g[x], {x, -1.5, 2.0}, AxesLabel → {x, "g(x)"}]

Out[!]=

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
x

0.05

0.10

0.15

g(x)
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In[!]:= Plot3Dc[x, y], {x, -1, 0.5}, {y, -1, 0.5},

PlotRange → All, PlotPoints → 40, AxesLabel → {x, y, "c[x,y] "}

Out[!]=

You should be aware that in some cases Mathematica is unable to find the convolution or the correlation.  For example,

In[!]:= c[x_] = Convolvejinc[ξ], jinc[-ξ], ξ, x

Out[!]=

4 Convolve BesselJ[1,π ξ]

ξ
, BesselJ[1,π ξ]

ξ
, ξ, x

π2

We note that it  is often still  possible to find the correlation function by reasoning in the frequency domain using the autocorrelation theorem
described in the Section 5.4.

Back to Contents?

5. Some Useful Properties of Fourier 
Transforms
Fourier  transforms have a number of interesting properties that are of great help in analyzing problems.  In this chapter we discuss some of 
these properties in detail.  Our attention is limited to properties for which Mathematica is helpful or relevant.

5.1  Symmetry Properties of Fourier Transforms
Symmetry properties in the x domain result in other symmetry properties in the u domain; we explore these properties in this section. 

Every function g(x) can be written as the sum of an even part e(x) and an odd part o(x), where

g(x) = e(x) + o(x), e(x) =
g(x) + g(-x)

2
, o(x) =

g(x) - g(-x)

2
and this decomposition is unique.  However,  the decomposition does depend on the origin chosen for g(x).   For example, cos(x) is even, but
cos(x – π/2) = sin(x) is odd.
Consider  now the symmetry properties  of  the Fourier  transform 4(u)  that  result  when we impose symmetry properties  on g(x).   The Fourier
transform of g(x) can be written as

4(u) = 
-∞

∞
(e(x) + o(x)) (cos(2 π u x) - ⅈ sin(2 π u x)) ⅆ x =


-∞

∞
e(x) cos(2 π u x) ⅆ x - ⅈ 

-∞

∞
e(x) sin(2 π u x) ⅆ x + 

-∞

∞
o(x) cos(2 π u x) ⅆ x - ⅈ 

-∞

∞
o(x) sin(2 π u x) ⅆ x,

where we have expanded the complex exponential into a sum of a real cosine term and an imaginary sine term.

The infinite integral of any function that is odd in x will vanish.  Note that e(x) sin(2πux) and o(x) cos(2πux) are both odd functions in x, and
therefore their integrals vanish, leaving two integrals with integrands that are even functions of x,
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4(u) = 
-∞

∞
e(x) cos(2 πux) ⅆ x - ⅈ 

-∞

∞
o(x) sin(2 πux) ⅆ x.

From this set of two integrals we can determine the properties of the even and odd parts of 4(u) by focusing on their u dependencies.  The table
below shows the resulting symmetry properties of 4(u):

g (x) 4 ( u)
even and real even and real

even and imaginary even and imaginary
odd and real odd and imaginary

odd and imaginary odd and real

We conclude from this table that when g(x) is real, we have 4(–u) = 4*(u) and we say that 4(u) has Hermitian symmetry, while when g(x) is
imaginary, 4(–u) = –4*(u) and we say that 4(u) has anti-Hermitian symmetry.  Note also that when g(x) is even, the symmetry properties of
4(u) are the same as the symmetry properties of g(x), while when g(x) is odd, they are not the same.
We illustrate these properties with two examples: g(x) = tri(x)*sgn(x), an odd and real function, and ⅈtri(x), an even and imaginary function:

In[!]:= ft1tri[x] * sgn[x]

Out[!]=
ⅈ -2 π u + Sin[2 π u]

2 π2 u2

In[!]:= ft1I * tri[x]

Out[!]= ⅈ Sinc[π u]2

In  the  first  example,  we  see  that  the  transform  is  odd  and  imaginary,  as  predicted,  while  in  the  second  example  the  transform  is  even  and
imaginary, also as predicted.

5.2  Area and Moment Properties of 1D Fourier Transforms
There is an intimate relationship between moments of functions in the x domain and the behavior of their Fourier transforms at the origin in the
frequency domain.  The simplest of these relations is an “area” property (the zeroth-order moment).  According to this property,


-∞

∞
g(x) ⅆ x = lim

u→0

-∞

∞
g(x) e-ⅈ2πux ⅆ x = 4(0).

To verify this theorem using Mathematica, we first integrate the Gaussian function to find its area, and then calculate the value of its Fourier
transform at the origin.  The two commands follow.

In[!]:= Integrategaus[x], x, -Infinity, Infinity

Out[!]= 1

In[!]:= Limitft1[gaus[x]], u → 0

Out[!]= 1

The equality of these two quantities holds for any function that is absolutely integrable.  It also holds for most transforms in-the-limit.

There exist related correspondences between moments of functions in the x domain and derivatives of their Fourier transforms at the origin in
the frequency domain.  Assuming that


-∞

∞
xk g(x) ⅆ x < ∞,

starting with the frequency domain expression and moving to the x domain,

ⅈ

2 π

k

Lim
u→0

ⅆk

ⅆuk


-∞

∞
g(x) e-ⅈ2πux ⅆ x

=
ⅈ

2 π

k

Lim
u→0


-∞

∞
g(x)

ⅆk

ⅆuk
e-ⅈ2πux ⅆ x  =

ⅈ

2 π

k

Lim
u→0


-∞

∞
(-ⅈ2π x)k g(x) e-ⅈ2πux ⅆ x = 

-∞

∞
xk g(x) ⅆ x.

Thus,
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The following examples of the first, second, and third derivatives of gaus[x] may be helpful:

First derivative:

In[!]:= Clear[:1, :2, :3]
:1[u_] = ft1[D[gaus[x], {x, 1}]]

Out[!]= 2 ⅈ ⅇ-π u2 π u

Second derivative:

In[!]:= :2[u_] = ft1[D[gaus[x], {x, 2}]]

Out[!]= -4 ⅇ-π u2 π2 u2

Third derivative:

In[!]:= :3[u_] = ft1[D[gaus[x], {x, 3}]]

Out[!]= -8 ⅈ ⅇ-π u2 π3 u3

You  can  see  that  in  each  case  the  spectrum  is  indeed  as  predicted  above.   Note  that  for  every  odd  derivative,  the  result  for  a  real  4(u)  is
imaginary, while for every even derivative, the result for a real 4(u) is real-valued.

In[!]:= Plot{Im[:1[u]], :2[u], Im[:3[u]]}, {u, -2, 2}, PlotRange → All,

PlotLegends → "Expressions", FillingStyle → Automatic, AxesLabel → {u, None}

Out[!]=

Im('1(u))

'2(u)

Im('3(u))

The command PlotLegends->Automatic plots a legend next to the figure. Note that Mathematica can even find an expression for the nth

derivative of the Gaussian function, although it takes some time to compute:

In[!]:= ft1[D[gaus[x], {x, n}]]

Out[!]= 2-1+n ⅇ
ⅈ n π

2
-π u2 -

1

π

-n

Abs[u]-1+n

-u + Abs[u] + u + Abs[u] Cos[n π] + u + Abs[u] Erfi π Abs[u] Sin[n π]

In  this  result,  the  Erfi  function  is  the  so-called  “imaginary  error  function,”  described  in  the  Mathematica  Help  menu  under  Wolfram
documentation.
The derivative theorem also works in reverse, i.e., for derivatives in the frequency domain.  The relationship in this reverse direction is

ⅆk

ⅆuk
4(u) = (-ⅈ2π x)k g(x).

5.5 The Projection-Slice Theorem
The projection-slice  theorem is  sufficiently  important  to  warrant  its  own section.   This  theorem states  that  given  a  projection  (to  be  defined
below)  through  a  2D  function  g(x,  y)  at  angle  θ  to  the  x  axis,  the  1D  Fourier  transform  of  that  projection  is  a  central  slice  through  the  2D
spectrum of g(x, y) at angle θ to the u axis in the frequency domain. Projections are at the heart of computerized tomography systems used in
medical X-ray and MRI machines.
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In[!]:= Clear[c, d, e]
c[n_] = (1 / 3) * ft1tri[x] * rect[x / 3] /. u → n / 3;

Quiet[d = Table[c[n], {n, -10, 10}]];
d[[11]] = Limit[c[n], n → 0];
e = TableExpI * 2 * Pi * (n / 3) * x, {n, -10, 10};

Plotd.e, {x, -4, 4}, Filling → Axis, AxesLabel → x, "gN(x)"

Out[!]=

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

g,(x)

This has been our first exposure to lists in Mathematica.  We will encounter them in much more detail when we consider the discrete Fourier
transform in the next chapter.

9.3  Mathematica Commands for Fourier Series
In the section above, we have shown the relations between Fourier transforms and complex Fourier series, including methods for constructing
such series given one period of a periodic function.  Mathematica actually has a set of commands that make these calculations much easier.  In
what follows, we keep the same definition of the function  p(x) defining one period, i.e.,  p(x) = tri(x) rect(x/3).

The  most  useful  Mathematica  command  with  respect  to  complex  Fourier  series  is  the  FourierSeries[p[x],x,n,FourierParame-
ters->{a,b}] command.  Mathematica defines this command to find Fourier coefficients ck according to

ck =  b
2 π


a+1

2 ∫- π

b

π

b g(x) ⅇ-ⅈ b k x ⅆ x, k = -n, ..., n.

To have this representation of the ck  conform to those derived above, the Fourier parameters (a, b) must be chosen as  {1,2*Pi/L}, where L
is the period of the periodic function.  We illustrate with the same periodic function used above, for which the period is 3.  We choose n = 4, as
we did in the first case above.
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In[!]:= FullSimplifyf.e

Out[!]=
2

3
π2 ρ HypergeometricPFQ

3

2
, 2,

5

2
, -π2 ρ2 Sin[ϕ]

We  can  see  this  result  by  plotting  it.   But  first  we  convert  it  to  a  function  of  rectangular  coordinates  using  the  command   /.{ρ→
Sqrt[u^2+v^2],ϕ→ArcTan[u,v]}.  The plot is then:

In[!]:= Plot3Df.e /. {ρ → Sqrt[u^2 + v^2], ϕ → ArcTan[u, v]}, {u, -5, 5},

{v, -5, 5}, AxesLabel → u, v, ":
N
", PlotRange → All, PlotPoints → 30

Out[!]=

Thus, the cos(θ) variation of the phase and the circ(r) dependence on radius in the (r, θ) plane have created a Fourier transform with a positive
mound and a negative mound, due to the sin(ϕ) dependence in the transform plane.  
Note  that,  while  we  have  illustrated  with  a  simple  function  that  is  separable  in  polar  coordinates,  the  method  also  works  when  the  Fourier
coefficients of the phase depend on r, although the computation times can be long.
We turn now to the discrete Fourier transform.
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10. The Discrete Fourier Transform
When we are dealing with discrete data, Fourier analysis plays an important role, for both 1D and 2D data.  However, the Fourier transform 
must be modified to accommodate discrete data rather than continuous data.  These modifications are the subject of this chapter.

10.1  Sampling in Both Domains
Suppose we wish to estimate the Fourier transform of a physical process f(x) that we imagine has existed from x = –∞ and will continue to exist
in the future for all x.  We can measure f(x) only over a limited duration of x, and therefore must base our estimate of the spectrum on a finite
segment,

g(x) =
f (x) 0 ≲ x < L
0 otherwise.

Our measurement instruments can only measure samples of g(x), so we must base our spectral estimate on a collection of such samples.  While
a spectrum of a finite duration signal can not be bandlimited, it can be approximately bandlimited to a total bandwidth B, so we can sample with
spacing Δx  = 1/B  with minimum aliasing in the spectral  domain.  As we have seen,  the result  of  this  sampling is  to  replicate  the spectrum to
create  a  periodic  Fourier  transform,  with  a  period  given  by  the  reciprocal  of  the  sampling  interval,  i.e.,  a  period  of  width  B or  greater  if  we
sample in the x domain with spacing 1/B or smaller.
It  is  not  generally  possible  to  calculate  a  continuous  spectrum  of  g(x),  for  it  would  involve  computation  of  an  infinite  number  of  spectral
samples spaced infinitesimally apart, so we must also sample the spectrum.  Since the data sample is limited to duration L, we can sample the
spectrum with spacing Δu = 1/L (or finer) without incurring aliasing in the x domain.  If we sample in the x domain with the minimum allow-
able spacing, the number of samples of g(x) will be N = L /(1/B) = LB.
Thus,  when  dealing  with  real  data,  we  must  work  with  finite  sets  of  samples  in  both  the  x  domain  and  the  u  domain.   The  discrete  Fourier
transform (DFT) is the tool that allows such spectral estimation to be performed.  In this chapter we explore the DFT and its properties.
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In[!]:= LogPlot{2 * n^3, 2 * n^2 * Log[2, n]}, {n, 1, 1000},

PlotRange → {10^0, 10^10}, AxesLabel → N, "Operations",

PlotLegends → {"Brute Force", "FFT"}, PlotLabel → "Operation Counts vs. N"

Out[!]=
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For a 1000 × 1000 image array, the reduction in operations when performing the FFT rather than the brute force DFT is about a factor of 100.
This reduction often makes the difference between an uncomfortably long computation and a much more reasonable computation time.
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11. The Fresnel Transform
A close relative of the Fourier transform is the Fresnel transform, a mathematical operation widely used in signal processing, optics, acoustics, 
and  electromagnetics.  In  this  chapter  we  explore  the  Fresnel  transform  for  both  continuous  functions  and  discrete  data.  The  1D  Fresnel 
transform is important in radar signal theory.  The 2D Fresnel transform is important in the theory of diffraction of waves of various types.

11.1  Definition of the 1D  Fresnel Transform 
The definitions of the 1D Fresnel transform differ in signal processing and in optics.  For signal processing, the 1D Fresnel transform f(u) of a
function g(x) is defined by

f (u) = 
-∞

∞
g (x) eⅈ π a x2

e-ⅈ2π x u ⅆ ξ.

That  is,  the  Fresnel  transform  is  the  Fourier  transform  of  the  product  of  a  function  g(x)  and eⅈ π a x2 .   The  constant  a  is  real-valued  and  has
dimensions 1/(dimension of x)2.    Since the operation is  a  Fourier  transform, all  Fourier  transform theorems apply.   The 1D exponential  with
argument proportional to x2 that appears in the equation is referred to as a  “quadratic-phase exponential” function.
In one dimension, g(x) is often bounded to a finite interval ± L/2.  The finite bound can be included in the definition of the function g(x). Note
that the Fresnel transform becomes a Fourier transform of g(x) when a  is small enough for the quadratic-phase exponential to be ignored.  We
defer the definition of the Fresnel transform used in optics to Section 11.4.

 11.2 Approximations to the Bandwidth of the Interval-Limited Quadratic-Phase 
Exponential

The width of the Fresnel transform f(u) is related to the bandwidth of the interval-limited quadratic-phase exponential function. By an interval-
limited function, we mean one that is non-zero over only a finite interval, (–L/2 , L/2). Since the Fresnel transform is the Fourier transform of a
product of two functions,  its  width must be the width of a convolution of the Fourier transforms of g(x)  and ei π a x2 .   If  we wish to know the
sampling interval required for this signal, we need to know its bandwidth. The first approach to finding that width is to actually apply a Fourier
transform to the function without an interval limitation.  Thus,
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As can be seen, the resulting distributions have shapes similar to the shapes of Fresnel diffraction patterns of a rectangular aperture measured
with different values of λz.  In the next section we explore the differences between the fractional Fourier transform and the Fresnel diffraction
integral.

  12.3  Relationship Between the Fractional Fourier Transform and the  Fresnel Diffrac-
tion Integral

To facilitate a direct comparison between the Fresnel diffraction integral and the fractional Fourier transform, we present both forms again:

f (x) =
1

ⅈ λ z
e
ⅈ

π
λ z

x2


-∞

∞
g(ξ) eⅈ

π
λ z

ξ2

e-ⅈ
2 π
λ z

ξ x ⅆξ

fα (u) = 1 - ⅈ cot (α) eⅈ π cot(α) u2


-∞

∞
e-ⅈ 2 π csc(α) u x -

cot(α)
2

x2 g(x) ⅆ x.

The first observation concerns dimensionality. In the Fresnel diffraction integral,  f(x) and g(x) have the same dimensions.  This is not the case
for the fractional Fourier transform. fα(x) has dimension given by the product of the dimension of g and the dimension of x.
Another major difference between the two forms concerns scaling factors.   It  is  clear from a comparison of the quadratic-phase exponentials
that,  for  these  factors,  cot(α)  in  the  fractional  Fourier  transform plays  the  same role  as  1/λz  in  the  Fresnel  diffraction  integral.   On the  other
hand, if we compare the linear-phase exponentials, we see that csc(α) is playing the same role as 1/λz.  cot(α) and csc(α) are not the same, so we
conclude  that  the  fractional  Fourier  transform  has  a  different  scaling  factor  than  the  Fresnel  diffraction  integral.   The  scaling  factor  for  the
quadratic-phase  exponentials  is  cot(α)  =  cos(α)/sin(α),  while  the  scaling  factor  for  the  linear-phase  exponential  is  csc(α)  =  1/sin(α),  which
explains  why the  patterns  of  1 fα(x)22  do  not  expand as  fast  with  increases  in  csc(α)  as  they  do with  increases  of  λz  in  the  Fresnel  diffraction
integral.

Finally, there are different scaling factors in front of the integrals in the two equations.  As a consequence, the heights of 1 fα(x)22  in the frac-
tional Fourier transform results do not fall as fast as the heights of 1f(x)22 in the Fresnel diffraction integral results.
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13. Other Transforms Related to the Fourier 
Transform

 13.1  The Abel Transform
We have  discussed  the  projection-transform method for  finding  a  radial  slice  through the  Fourier  transform of  a  given  function.   When that
function  is  circularly  symmetric,  projections  at  all  angles  are  the  same.   The  Abel  transform  is  fundamentally  a  projection  transform  for
circularly symmetric functions.
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Here Gamma[s] represents the gamma function with argument s.
To demonstrate Mellin inversion,

In[!]:= InverseMellinTransform[b-s Gamma[s], s, x]

Out[!]= ⅇ-b x

The Mellin transform also has a 2D version, as illustrated by

In[!]:= Assumingb ∈ Reals && c ∈ Reals, MellinTransformrtri[x / b] * gaus[y / c], {x, y}, {sx, sy}

Out[!]=

bsx 
1

c2

-sy/2

π-sy/2 Gamma
sy

2


2 sx+2 sx2
b > 0

0 True

The Fourier–Mellin Transform
If the region of convergence of the Mellin transform includes the s = ⅈω axis, then by substituting ⅈω for s, we obtain what has been called the
Fourier–Mellin transform.  There is a property of this transform that is of particular interest in pattern recognition.  The reason for this interest
is illustrated by the following Fourier–Mellin examples:

In[!]:= FullSimplifyAbsMellinTransform[rect[x], x, s] /. s → I * ω

Out[!]=
2Im[ω]

Abs[ω]

We have taken the absolute values of the Mellin transform in this and the following case. Note that Im[ω] = 0, so the numerator of this fraction
is unity, and the result is

1ℳ(ⅈω)2 =
1

1ω2
.

Now consider a magnified or de-magnified version of the same function, with the constant b > 0:

In[!]:= FullSimplifyAbsMellinTransform[rect[x / b], x, s] /. s → I * ω

Out[!]=
2Im[ω] ⅇImω Log

1

b


Abs[ω]

Since both ω  and b  are real  and because b  > 0,  both terms in the numerator are unity and the resulting absolute value of the Fourier–Mellin
transform is unchanged by changes in b.  This property carries over to the 2D Fourier–Mellin transform as well.  We conclude that the absolute
value  of  the  Fourier–Mellin  transform  is  unchanged  by  expansion  or  contraction  of  the  scale  size  of  the  function  being  transformed.   This
property has been exploited in pattern recognition.  See, for example, Ref. [9].
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14. Fourier Transforms and Digital Image Process-
ing With Mathematica
While in the not-too-distant past,  the most common methods for capturing and recording images were based on photographic film, today the 
vast  majority  of  images  are  collected  and  processed  in  digital  form.  Mathematica  has  considerable  capability  to  process  such  imagery  in 
various ways.  Digital image transformations often involve modifications to the contrast in images, geometric transformations such as removal 
of distortion, feature extraction, and resolution enhancement, to mention a few such operations.  Here we introduce the reader to only a few of 
Mathematica’s capabilities in this broad and diverse field.
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Recognizing that the Fourier plane is accessible, it is possible to place a transparency in the common focal plane that contains a desired transfer
function, and the filtered image will appear in the rear focal plane of the second lens.
There is one subtlety that should be mentioned.  The double-lens imaging system operates as a linear, invariant system on the complex fields.
That is,  the complex field in the input plane is linearly filtered to produce the complex field at the output.   However,  detectors in the optical
region  of  the  spectrum  cannot  detect  complex  fields.   Rather,  they  detect  intensity,  which  is  the  squared  magnitude  of  the  complex  field.
Therefore, what we observe at the output of the double Fourier-transforming system is the squared magnitude of the filtered field; thus there is a
final nonlinear operation before observation of the result. Nonetheless, there are many examples of useful image processing operations that can
be performed by such a system.  We focus on one such operation in the section that follows.

15.3  Phase Contrast Imaging
In microscopy, it is often the case that specimens of interest are very weakly absorbing, making it difficult or impossible to observe them with a
conventional microscope. However, those specimens typically have a refractive index profile that is significantly different than their surround-
ings, making them predominantly phase objects.  Several different methods are available to enhance such images, namely, methods that convert
phase perturbations into intensity variations observable with the properly modified microscope.
We  should  mention  at  the  start  that  a  typical  conventional  microscope  is  not  unlike  the  optical  system  described  above  with  two  lenses
separated by twice their common focal length.  The chief difference is that the focal length of the objective lens (the first lens in the sequence)
is  much  shorter  than  the  focal  length  of  the  eyepiece  (the  second  lens),  leading  to  a  magnification  that  is  the  ratio  of  the  two  focal  lengths.
Another difference is that the objective may not be a simple lens as we hypothesized, but rather a group of lenses, chosen to minimize aberra-
tions  and  chromatic  dependencies.   However,  the  simple  model  with  two  lenses  having  identical  focal  lengths  captures  the  essence  of  the
system and will continue to be used here.
We explore some methods for making such objects visible with good contrast in what follows.

Modeling a Pure Phase Object
To test the various methods for visualizing phase objects, we must start with a simple model of such an object.  As a simple model, we adopt a
blank background on top of which ride three circularly symmetric phase objects of different radii and each with a triangular radial phase profile.
The size of the object array is denoted by n, and in the interest of keeping this file as small as possible, n is chosen to be 256. The reader with
the full Mathematica program can experiment with increasing the value of n in these examples.
In what follows we present the code to create this object and show images of the phase profile:

In[!]:= n = 256;
phaseprofile = ParallelizeTable

tri[Sqrt[((x - n / 8)^2 + (y - n / 8)^2)] / 8] + tri[Sqrt[((x + n / 8)^2 + (y + n / 8)^2)] / 32] +

tri[Sqrt[((x + n / 4)^2 + (y - n / 4)^2)] / 16], {x, -n / 2 + 1, n / 2}, {y, -n / 2 + 1, n / 2};

ListPlot3Dphaseprofile, PlotRange → All, AxesLabel → {x, y, phase}

Out[!]=

We can also convert this phase profile to an image:
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