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1. Introduction

The  speckle  phenomenon  is  ubiquitous  in  many  fields  of  science  and  technology.  Speckle  phenomena  can  be  seen  in  many  different  imaging
modalities, including acoustical imaging (e.g., medical ultrasound) and microwave imaging (e.g., synthetic-aperture radar imaging). This  book

focuses on simulating optical speckle with Mathematica®, but the same methods used can in many cases be applied to other imaging modalities.

The  reader  may  wonder  why  Mathematica  has  been  chosen  as  the  software  package  for  this  book.  There  are  several  reasons  for  this  choice.
First, and most important, Mathematica allows the interspersing of both continuous and discrete calculations under one umbrella. Second, using
Mathematica,  text,  code,  and  illustrations  can  be  included  in  the  same  document.  Third,  using  Mathematica  we  can  create  dynamic  figures,
parameters  of  which  the  user  can  change  at  will.  However,  such  manipulation  cannot  be  performed  in  the  printed  version  of  the  book,  so  we
have  avoided  manipulable  figures  in  what  follows  and  replaced  them  by  arrays  of  static  figures.  Lastly,  this  author  loves  Mathematica  for  its
flexibility  and  comprehensiveness.  It  seems  there  are  almost  an  infinite  set  of  capabilities  of  the  program,  many  of  which  lie  hidden  for  the
novice user but which gradually are revealed as the use of the program increases. This book has been written entirely in Mathematica. It can be
read with the full program Mathematica or with the free program Wolfram  Player available for download from the Wolfram  site. The Mathemat-
ica files  for  all chapters can  be found at  the following URL:  http://spie.org/Samples/Pressbook_Supplemental/PM355_sup.zip  This  book  is
meant as a companion to the book Speckle Phenomena in Optics: Theory and Applications, 2nd Edition, published by SPIE Press (Ref. [1]). An
extensive list of references can be found in that book.

1.1  Mathematica Background
For some background that will be helpful to the reader new to Mathematica, see Ref. [2]. There are many books that describe the capabilities of
Mathematica.  Ref.  [3]  is  especially  comprehensive.  Our  goal  here  is  to  not  only  present  methods  for  simulating  speckle  in  various  situations
and  applications,  but  also  to  introduce  the  reader  to  the  capabilities  of  Mathematica.  In  what  follows  we  present  some  salient  features  of
Mathematica that will help the novice get started.

1.  Built-in functions of Mathematica always begin with upper-case letters. If the command consists of a concatenation of two separate words,
both words must begin in upper-case letters.
2.   In  order  to  avoid  confusion  with  built-in  commands,  user-defined  functions  should  usually  begin  with  a  lower-case  letter.  However,  it  is

permissible to begin commands with an upper-case letter in a font that is different than Source Code Pro, the usual font for Mathematica

input. As an example,  is not the same as N.
3.   Mathematica  reduces  an  input  that  is  a  rational  number  to  the  equivalent  simplest  rational  number  possible.  The  ratio  32/6  yields  16/3,
but does not produce an approximate decimal result. To  obtain a decimal result, place a decimal point at the end of either the numerator or the

denominator. Thus, 32./6 yields the result 5.33333.
4.   The  arguments  of  functions  must  be  enclosed  in  square  brackets  [ ].  Curly  brackets  { }  are  reserved  for  containing  lists,  which  can

represent  vectors  and  matrices,  and  are  also  used  for  variable  ranges  in,  for  example,  plot  commands.  Parentheses  (  )  are  reserved  for
grouping mathematics.

5.  When a function is first  defined,  each independent variable on the left of the definition  must be followed by an underbar _. Underbars are
not used on the right of the definition, or when the function is called by later code.

6.  The symbol := is a delayed equality,  for which the operation of equality is made only when the symbol on the left is called in later program-
ming.

7.   The  symbol  %,  when  used  as  the  argument  of  a  function,  represents  the  last  previous  output,  which  is  now  used  as  the  input  to  this  new

function. %% represents the second-to-last output, etc.

8.  Often certain symbols may be used more than once in a program, with their meaning having changed between uses. If h is the symbol, then

the  command  Clear[h]  erases  the  definition  of  the  symbol  h  and  allows  a  new  definition  to  be  made.  To  clear  more  than  one  symbol,  for

example,  h  and  g,  use  Clear[h,g].  To  clear  all  symbols  and  functions  that  have  been  previously  defined,  use  the  command

Clear["Global`*"].
9.   The  symbol  ;  at  the  end  of  an  expression  to  be  evaluated  indicates  that  the  evaluation  should  take  place,  but  the  result  of  the  evaluation
should be suppressed until it is needed later in the program.

10.  The symbol I (or ) is used in Mathematica for the imaginary constant -1 . The symbol D[] indicates a derivative operation.
11.  To  execute a command in Mathematica, place the cursor in the same cell (cells are indicated by vertical lines on the right of the notebook)
as the command, and press the shift key and the return key simultaneously.

12.  The symbols && mean a logical and; the symbols || mean a logical or.



the sum is the squared magnitude of the amplitude. When referring to the complex-valued optical field, we use the term complex amplitude. 

In optics, speckle arises when light is reflected  from a rough surface or is transmitted through a diffuser  that jumbles the phase at each object
point  by  an  unpredictable  amount.  The  contributions  from  various  scattering  regions  on  the  object  then  generate  a  multitude  of  complex
wavelets  that  interfere  to  produce  speckle.  When  the  reflected  or  transmitted  light  propagates  to  an  observation  plane  some  distance  away,
complicated fluctuations  of amplitude, phase, and intensity occur in that plane due to random interference. These fluctuations  are what we refer
to as speckle. If the phase perturbations introduced by the object equal or exceed 2π radians, we say that the speckle is fully developed. If on the
other hand the phase fluctuations  introduced by the object are less than 2π radians, the resulting speckle is called partially developed. In some
cases, one scattered wavelet may be much larger  than the others, in which case the speckle is neither fully developed nor partially developed,
but rather requires a special development to understand the statistics of the observed light amplitude or intensity.

It is important to remember that when we speak of the statistics of speckle, we are speaking of fluctuations  over an ensemble of macroscopi-
cally similar but microscopically different  rough surfaces or diffusers.  The  resulting perturbed wavefront is unchanging for any one surface or
diffuser,  but  changes  as  different  rough  surfaces  or  different  diffusers  are  introduced.  Since  we  do  not  know  the  fine-scale  structure  of  the
surface  fluctuations,  the  best  we  can  do  is  specify  statistics  over  an  ensemble  of  possible  surfaces.  To  experimentally  discover  statistical
properties  of  the  speckle,  either  many  different  microscopically  different  reflecting  or  transmitting  structures  must  be  introduced  sequentially,
or,  in  the  case  of  speckle  that  is  spatially  ergodic  (i.e.,  statistically  similar  over  a  wide  region  of  the  speckle  pattern),  spatial  averages  should
yield the same results as an ensemble average.

In Chapter 2, we explore the first-order  statistical properties of the amplitudes of sums of random phasors. In Chapter 3, we explore the first-
order  statistical  properties  of  the  intensity  of  such  sums  (i.e.,  the  squared  magnitude  of  the  resultant  phasor).  Later  chapters  explore  the
properties  of  speckle  in  images,  speckle  in  free-space  propagation,  speckle  at  low  light  levels,  phase  vortices  in  speckle,  polarization  speckle,
and speckle in certain metrology techniques.

Note that the theoretical results for the probability density functions of amplitude or intensity,  as found in Ref. [1], are based on the assumption
of an infinite  number of random phasor contributions. Obviously we can not simulate an infinite  number of random phasors on the computer,
but  we  can  choose  a  large  finite  number.  Our  results,  then,  will  yield  information  on  how  well  the  theoretical  predictions  of  the  statistics  of
amplitude and intensity match the results based on a large but finite number of phasors.

1.3  Methods for Simulating Speckle
In  Chapters  2  and  3,  we  simulate  the  first-order  statistics  (i.e.,  the  speckle  at  a  single  point  in  space  or  time)  by  summing  a  large  number  of
complex  phasors.  Assumptions  are  made  in  various  sections  about  the  statistics  of  the  phase  of  the  phasors  or  about  the  number  of  phasors.
Histograms  of  the  various  results  are  computed  and  compared  with  the  theoretical  results  valid  for  an  infinite  number  of  phasors.  The  ideas
behind these simulations are quite straightforward. We  simply sum a finite  number of complex phasors and examine the statistics of amplitude
(Chapter 2) or intensity (Chapter 3) by calculating histograms of the results of a large number of independent trials.

Calculating a 2D speckled image is a more complex issue, since the image speckles generally must remain correlated in intensity over a number
of adjacent pixels, thus generating speckles of finite  width. We  can identify two different  methods for generating a field  of intensity speckles.
One  we  call  the  physics-based  method  and  the  second  we  call  the  statistics-based  method.  I  thank  Prof.  James  Fienup  of  the  University  of
Rochester for suggesting that I add this section to this introduction. The two different approaches will now be discussed.

Physics-Based Methods

In the physics approach we generate speckle by simulating the optical system through which light passes from input to output, or in some cases
the physical laws that govern the propagation of light from one plane to another. 

The majority of the physics-based speckle simulation approaches in the chapters that follow are based on what is known as a 4f optical system,
as shown below.

One  can  think  of  the  first  lens  as  the  objective  of  a  microscope  and  the  second  lens  as  a  tube  lens,  although  we  have  artificially  held  the
magnification  to  unity  by  virtue  of  the  two  equal  focal  lengths.  Thus,  the  4f  system  is  perhaps  more  representative  of  imaging  systems  than
might be thought at first glance. For a more complex optical system, the exit pupil of the system plays the same role as a Fourier-plane stop in
the 4f system. The beauty of the 4f system from the simulation point-of-view is that the complex amplitude distribution of the light in the focal
plane  is  simply  the  scaled  Fourier  transform  of  the  complex  field  distribution  leaving  the  object  plane,  and  we  can  use  discrete  Fourier  trans-
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2. First-Order Statistics of Speckle Amplitude

By  first-order  statistics  of  speckle  we  mean  the  statistics  observed  at  a  point  in  space  or  a  point  in  time,  with  the  statistics  being  over  an
ensemble of rough surfaces or rough diffusers. First we consider the statistics of speckle complex amplitude, relevant when using ultrasound or
microwave  illumination  of  surfaces  that  are  rough  on  the  scale  of  their  individual  wavelengths.  For  such  imaging  modalities,  it  is  possible  to
measure  both  the  magnitude  and  the  phase  of  the  wavefields.  In  Chapter  3  we  turn  to  the  statistics  of  speckle  intensity,  which  is  the  most
relevant quantity for the optical region of the spectrum, where a detector can measure only intensity unless some form of interferometry is used.

2.1 Speckle as a Sum of Independent Random Complex Phasors
The statistics of speckle at a point are the same as the statistics of a sum of complex phasors with independent amplitudes and phases. Let the

symbol ck represent the k
th

 element in an array of  different complex phasors of the form

ck = ak exp ( ϕk), k = 1, ⋯ ,  ,

where  ak  is  a  non-negative  amplitude  and  ϕk  is  a  phase.  Each  phasor  represents  an  independent  contribution  to  the  complex  amplitude  of  the
field  at a point in space or time. We  assume that ak  and ϕk  are random variables drawn from a statistical ensemble, and that they are statistically
independent  of  each  other  and  statistically  independent  of  all  other  random  variables  occurring  in  the  array  of  phasors.  We  then  form  the
normalized sum

s =
1





k=1



ck =
1




k=1



ak exp ( ϕk) =
1





k=1



ak cos ϕk + 
1




k=1



ak sin ϕk,

where the normalization by 1    is introduced to preserve a finite second moment of the sum. We  next explore the Mathematica representa-

tion of random phasor sums.

2.2  Amplitude Statistics of the Sum of Many Random Phasors with Unit Lengths and 

Random Phases
From Ref. [1] we have many analytic results regarding the statistics of random-phasor sums. Here we will develop several discrete Mathemat-
ica  calculations  that  are  approximations  to  those  analytical  results.  As  mentioned  previously,  the  approximations  stem  primarily  from  the  fact
that in simulations we can only include a finite  number of random phasors, while the analytical results strictly hold only for an infinite  number
of such phasors.

The  first  case  considered  will  be  one  for  which  the  lengths  of  all  phasors  in  the  sum  are  unity  (aside  from  the  1/   normalization)  and  the
individual phases are uniformly distributed on the interval (–π, π). The appropriate sections of Ref. [1] for this case are 2.1 and 2.2. Our goal is
to calculate discrete approximations to the probability density functions of the real part, the imaginary part, and the magnitude of s. Note that
the magnitude of s is the same as the length  of the resultant phasor.  In this section we consider only a large number ( ≫ 10) of phasors in
the sum.

Two  parameters need to be chosen at the start: the first  is , the number of independent phasors in the sum defining  s. The second is ℳ, which
is the number of times the simulation is run with independent phases for the individual phasors contributing to the sum. This multitude of runs
collects  the  statistical  data  we  desire.  The  value  of  ℳ  =  10,000  is  usually  used  throughout  the  entire  notebook.  If  you  wish  to  obtain  more
accurate histograms with less error, increase the value of ℳ, but you do so at the cost of longer computation times. For example, if you set ℳ =
100,000, the histograms are much improved, but you may need to evaluate this notebook with an overnight run. Sometimes we let the number
of phasors  equal the number of trials ℳ for simplicity.

We  must  construct  a  loop  that  will  calculate  the  real  and  imaginary  parts  of  the  random  phasor  sum  s  over  ℳ  trials,  each  with  a  different
realization of the random phase sequence. We  first  construct two tables into which the results of the calculation can be placed, one for the real
part of s and the other for the imaginary part of s. Initially, the entries in the two tables are all zeros.

We  construct  a  loop  that  will  calculate  a  sequence  of  ℳ  values  of  the  sum  s,  each  with  a  different  realization  of  the  random  phase  sequence.
The code is explained as follows:

Line 1- This clears the values of variables that will be used.

Line  2  -  This  specifies  the  value  for    (outside  the  loop).  We  choose    =  100  to  assure  that  the  results  will  be  valid  for  a  large  number  of
phasors. Also,  the larger ℳ, the more accurate our estimates of the statistics will become. The  computation time required for ℳ = 10,000 trials



2.4 Amplitude Statistics of the Sum of a Small Number of Unit-Length Random Phasors 

As a matter of curiosity,  we consider results similar to those above, but for small numbers of phasors in the sum. We  will compare the results
obtained to those in Fig. 2.7 of Ref. [1].

The  loop  we  constructed  in  Section  2.1  is  perfectly  capable  of  finding  results  when  the  number  of  phasors  is  small—it  is  simply  a  matter  of
choosing a small value for .

Here we wish to calculate histograms of the length of the phasor  for several different small values of . For that reason we replace the outer

For[] loop with one that cycles the calculation through several values of the index  representing the number of phasors added. The value of

  starts  with   =  1  and  terminates  after   = 0,  the  largest  value  of    of  interest.  The  value  of  ℳ  (the  number  of  trials)  remains  10,000.

Three tables of zeros are defined,  again for the arrays real and imag but also for a new array hist, which is 0 elements long (0 = 6 in

this example) and will hold the 0 different histogram lists generated by the outer For[] loop. When the histogram list for the  th
 phasor is

generated, it is stored in the  th element of hist, i.e., hist[[]]:  

In[ ]:= Clear, ℳ, 0 , real, imag, hist, phi, t

0 = 6; ℳ = 10000;
real = Parallelize[Table[0, {k, 1, ℳ}]];
imag = Parallelize[Table[0, {k, 1, ℳ}]];
hist = Parallelize[Table[0, {k, 1, 0}]];

For = 1,  ≤ 0, ++,

Fori = 1, i ≤ ℳ, i++,

phi = Parallelize[Table[RandomReal[{-π, π}], {k, 1, }]];

t = (1 / Sqrt[]) * ExpI * phi;

reali = Total[Re[t]];

imagi = Total[Im[t]];

hist〚〛 = HistogramSqrtreal^2 + imag^2, 100, "PDF";

Next we wish to compare these histograms with more exact results calculated by numerical integration. As  shown in Ref. [1], Section 2.5, the
probability density function of the amplitude  of the sum of  unit-amplitude, random-phase phasors is given by the following equation:

p() = 4 π2
0

∞

r J0
2 π r





J0(2 π  r)  r,

where J0 is the Bessel function of the first  kind, order 0. We  now calculate (using numerical integration) and plot p() for  = 1 through 6 and
superimpose  those  plots  as  red  curves  on  top  of  the  corresponding  histograms.  Note  that  for    =  1,  the  amplitude  will  be  a  constant  equal  to
unity  and  the  probability  density  function  will  be  a  delta  function  at    =  1.  Mathematica  does  its  best  to  represent  that  delta  function.  The
Mathematica code representing the expression for p() for an arbitrary value of  follows:

In[ ]:= Clear[, k]

k[_, _] := Assuming ∈ Reals &&  > 0,

4 * π^2 *  * NIntegrater * (BesselJ[0, 2 * π * r / Sqrt[]])^ * BesselJ[0, 2 * π *  * r],

r, 0, Infinity, MaxRecursion  20, PrecisionGoal  100

The  command  MaxRecursion->20  instructs  the  numerical  integration  procedure  to  recursively  subdivide  the  integration  interval  no  more

than  20  times.  PrecisionGoal->100  instructs  the  procedure  to  aim  for  a  relative  error  of  100  digits.  That  is,  the  error  in  calculating  a

quantity g should aim for error ⩽  |g| × 10-100. These commands are included to promote accuracy in the numerical integration.

We  can now calculate (and suppress) the plots obtained by numerical integration for  = 1 to 6. As  increases, the probability density function

approaches  a  Rayleigh  density,  which  is  the  result  for    =  ∞.  A  Quiet[]  command  around  the  calculations  is  included  to  suppress  certain

warnings from Mathematica. The 6 plots are included as individual elements of the list q. These calculations take a substantial amount of time.
Each  numerical  integration  has  been  placed  in  a  separate  cell  so  that  if  readers  execute  the  code,  they  can  keep  track  of  the  progress  of  the
computations by examining which cells have completed their work.

In[ ]:= q = Table0, i, 1, 6;

Quiet

q〚1〛 = Plotk[, 1], {, 0.6, 1.4}, PlotRange  {0, 100}, Filling  None, PlotStyle  Red;
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3. First-Order Statistics of Speckle Intensity

In the optical region of the spectrum, detectors are unable to follow the ultra-fast cycles of the optical field  amplitude, but rather,  they respond
to incident power or intensity,  averaged over some response time of the detector and some finite area of the detector element. For that reason, in
studying speckle in the optical region of the spectrum, the intensity statistics of random phasor sums are of much greater interest than amplitude
statistics. We  now turn our attention to simulating the intensity statistics of random phasor sums.

The  Mathematica  code  used  in  the  previous  chapter  for  various  amplitude  cases  can  be  reused  with  small  changes.  Instead  of  calculating  the
length  of  the  random  phasor  sums,  we  must  calculate  the  squared  length  of  those  sums,  for  the  squared  length  corresponds  to  intensity.
Accordingly, we modify the previous code to calculate intensity statistics.

3.1 Intensity Statistics of the Sum of Many Random Phasors with Unit Lengths and Ran-
dom Phases

The modified code for calculating an approximation to the intensity statistics, as drawn from Section 2.1 above, is as follows:

In[ ]:= Clear, ℳ, real, imag, phi, t, p1, p2

 = 100; ℳ = 10000;
real = Parallelize[Table[0, {k, 1, ℳ}]];
imag = Parallelize[Table[0, {k, 1, ℳ}]];

Fori = 1, i ≤ ℳ, i++,

phi = Parallelize[Table[RandomReal[{-π, π}], {k, 1, }]];

t = (1 / Sqrt[]) * ExpI * phi;

reali = Total[Re[t]];

imagi = Total[Im[t]];

In[ ]:= p1 = Histogramreal^2 + imag^2, 200, "PDF";

One change has been made in the last line of the code. The square root needed to calculate amplitude has been removed, with the result that we
are calculating a histogram of intensity. 

We  wish to compare this histogram with the theoretical result for the negative-exponential probability density function (PDF) of intensity (with
mean unity), valid when an infinite number of normalized phasors compose the sum:

In[ ]:= p2 = PlotPDFExponentialDistribution[1], x,

{x, 0, 4.0}, Filling  None, PlotStyle  Red, ImageSize  200;

LabeledShow{p1, p2}, ImageSize  200, {"p(ℐ)", "ℐ"}, Left, Bottom

Out[ ]= p(ℐ)
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As can be seen, the match is quite good, and would be even better if we used a larger number of trials (larger ℳ).

It is of interest to know the mean and the standard deviation of the resulting approximate PDF represented by the histogram. Mathematica has
commands that allow us to directly calculate these quantities:



In[ ]:= GraphicsRow{a5, a7}, ImageSize  500

Out[ ]=
p(ℐ)
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Again,  the  agreement  is  reasonably  good,  and  would  be  improved  with  a  larger  value  of  ℳ.  As  k  increases,  the  histogram  is  approaching  a
Gaussian probability density with a mean equal to k, i.e., the number of speckle patterns added, since each pattern had a mean of unity.

3.5  Intensity Statistics of Partially Developed Speckle

Attention  is  now  turned  to  the  case  of  partially  developed  speckle.  Such  speckle  occurs  in  practice  when  light  is  reflected  from  a  surface  that
has a roughness that is less than a half wavelength of the light, or when light is passed through a diffuser that randomizes the phase of the light
by  less  than  2π  radians.  It  may  also  be  observed  when  an  adaptive-optics  system  in  a  telescope  does  not  fully  compensate  for  the  wavefront
perturbations  introduced  by  the  turbulent  atmosphere.  The  parameter  0  is  the  total  number  of  different  phase  standard  deviations  that  are
included in the computation, while again the parameter ℳ is the total number of trials in the calculation and  is the number of phasors added

on each trial. Each phasor has a length 1/  . We  assume that the phase of the scattered light is a Gaussian (or normal) random variable with
zero mean and variable standard deviation equal to s × π/8, where s ranges from 1 to 8 in increments of 1. Thus,  the phase standard deviation
ranges from π/8 to π in increments of π/8. 

During each step through the i index, a magnitude-squared averaged over ℳ trials of the random phasor sum is calculated. Each step of the s
index increases the phase standard deviation in increments of π/8, with s ranging from 1 to 0 = 8. For each value of s, histograms of the real
part  of  the  complex  amplitude,  the  imaginary  part,  and  the  squared  magnitude  are  calculated.  If  we  choose  ℳ  =  10,000  to  obtain  accurate
histograms, the calculation takes a long time.

First  we  establish  tables  into  which  various  results  can  be  placed.  histr  holds  the  histograms  of  the  real  part  of  the  complex  amplitude  for

different  values of s, histi holds histograms of the imaginary part of the complex amplitude, and hist holds histograms of the intensity of
the speckle pattern.

In[ ]:= Clear[, ℳ, ]

 = 8; ℳ = 10000;  = 100;
real = Parallelize[Table[0, {k, 1, ℳ}]];
imag = Parallelize[Table[0, {k, 1, ℳ}]];
magsq = Parallelize[Table[0, {k, 1, ℳ}]];
mag = Parallelize[Table[0, {s, 1, }]];
histr = Parallelize[Table[0, {s, 1, }]];
histi = Parallelize[Table[0, {s, 1, }]];
hist = Parallelize[Table[0, {s, 1, }]];

Next we run 10,000 trials, adding 100 phasors on each trial, and increase the standard deviation of the Gaussian phase by increments of π/8 on
each  of  the  8  outer  iterations.  Histograms  of  the  real  and  imaginary  parts  of  the  complex  amplitude  are  calculated  for  each  phase  standard
deviation, as is also a histogram of the intensity.
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5. Simulation of Speckle in Free-Space 

Propagation

Calculating  the  diffraction  patterns  of  clear  apertures  of  various  shapes  is  a  common  task.  However,  similar  calculations  for  apertures  with  a
complex internal structure are less common. In the case studied here, the internal structure of a rectangular aperture is a random pattern of phase
representing  a  diffuser.  To  perform  the  simulation  of  propagation,  choices  must  be  made  for  the  number  of  samples  within  the  aperture  (the
parameter ℳ  in what  follows) and the  total number of samples  in the simulation  (the parameter    in what  follows),  as well  as  the method of
calculation. Guidelines for choices of these parameters and methods for clear apertures do not apply in this more complex case.

The geometry assumed for these simulations is shown in the figure below:

A  normally  incident  plane  wave  from  a  highly  coherent  source,  indicated  by  the  arrows  on  the  left,  is  incident  on  a  diffuser,  and  light  is
scattered in many directions. The  incident uniform light spot is bounded by an aperture. The  goal is to find the speckle pattern in a plane at a
normal distance z from the average diffuser surface, indicated by the vertical line labeled observation plane, and to observe the changes in that
pattern as z is changed.

Because of the long computation times required for 2D simulations, the simulations in this chapter will be 1D. Generalizations to two dimen-
sions will be fairly obvious, and as computer speeds continue their upward march, 2D simulations may become less time consuming in the near
future.

5.1  The Diffuser

We  will  now  construct  a  1D  correlated-phase  diffuser  similar  to  the  2D  version  constructed  in  the  previous  chapter.  A  difference  from  the
previous  chapter,  besides  the  smaller  dimensionality,  is  that  this  1D  diffuser  will  be  imbedded  in  a  surrounding  padding  of  zeros.  The  first
simulation will have  pixels, ℳ of which are diffuser and  – ℳ of which are zeros. We  occasionally use the symbol  to represent the ratio
/ℳ,  which  is  the  ratio  of  the  total  number  of  samples  to  the  number  of  those  samples  lying  in  the  diffuser  aperture.  The  reason  for  padding
with zeros is that the more the diffuser is padded with zeros, the finer the sampling will be in the spectrum of the diffuser and in its diffraction
pattern. The choices of  and ℳ must be tailored to the problem at hand. We  elaborate on this issue in the two sections to follow.

Initially,  we  let    =  4096  and  ℳ  =  512.  Note  that  in  the  Mathematica  code,  we  are  using  script  ,  ℳ,  and    to  avoid  any  confusion  with
Mathematica commands, which always begin with non-script upper-case letters. The second approach will use a different value for ℳ.

We  wish  to  create  a  diffuser  Fourier  spectrum  that  is  tapered  to  small  values  at  the  window  edges  to  avoid  significant  aliasing.  Constructing
such  a  diffuser  requires  the  introduction  of  correlations  between  phase  samples.  This  is  accomplished  by  first  generating  a  length-ℳ  array  of
uncorrelated  Gaussian-distributed  phases  and  then  smoothing  that  array  with  a  finite  window  via  convolution.  For  the  kernel  in  this  case  we

choose a sinc-function (sinc[x]= sin[π x]
π x

) smoothing window (i.e., a convolution kernel) with a main-lobe half-width of  = 8 pixels. 



In[ ]:= poissondata =

ParallelizeTableRandomVariatePoissonDistributionintegratedintensi, j,

i, 1,  / , j, 1,  / ;

Finally, we visualize the super-pixel photocounts as an image for a uniform incident intensity:

In[ ]:= ImageAdjustImagepoissondata

Out[ ]=

We  see  that  the  uniform  intensity  incident  on  the  detector  array  generates  a  significant  variation  of  the  detected  signal  due  to  the  Poisson
statistical variations of the photoevents associated with detection. 

6.2 The Negative-Binomial Distribution

If instead of a constant intensity falling on a super-pixel,  there is a speckle pattern, the photocount statistics are no longer Poisson-distributed.
Instead the proper distribution to use is a negative-binomial distribution for the number of photocounts (Ref. [1], p. 424). The  extra statistical
fluctuations  of  the  speckle  pattern  induce  extra  fluctuations  of  the  photocounts  from  a  super-pixel,  and  these  extra  fluctuations  lead  to  the
negative-binomial  distribution.  Note  that  the  fluctuations  of  the  incident  speckle  pattern  are  partially  reduced  by  integration  of  those  fluctua-
tions  over  each  super-pixel  when  the  speckle  is  finer  than  the  size  of  the  super-pixel,  and  this  is  why  the  negative-binomial  distribution  is
appropriate, rather than the Bose–Einstein distribution, which would apply if there were a single speckle incident on each detector element.

Mathematica  has  knowledge  of  the  negative-binomial  distribution,  but  not  exactly  in  the  form  we  need.  From  the  reference  given  above,  the
probability of k photocounts occurring in a super-pixel is given by

P(k) =
Γ(k + m)

Γ(k + 1) Γ(m)
1 +

m

k

-k

1 +
k

m

-m

,

where k is the number of counts, k is the average number of counts, and m is the average number of speckles per super-pixel. On the other hand,
the Mathematica form of the negative-binomial distribution is

P(k) =
m + k - 1
m - 1

pm(1 - p)k,

where 
m + k - 1
m - 1

is a binomial coefficient and is equivalent to
Γ m+k

Γ k+1 Γ(m)
. The mean of the first form of the distribution is k, while the mean of

the second form of the distribution is 
m 1-p

p
. Equating the two expressions for the mean, we obtain the equivalences

p = 1 + k

m

-1

1 - p = 1 +
m

k

-1
.
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9. Speckle Simulation for Metrology

In most imaging applications, speckle is a nuisance, and various methods are used to attempt to suppress it. However, in the field  of metrology,
speckle can be a friend rather than a foe, and many methods for using speckle in measurement have been devised. Here we will simulate only a
few of such methods; the interested reader is referred to Ref. [1], (Chapter 9), for a more comprehensive discussion of this topic, together with
references to the pertinent original publications.

9.1. Measurement of In-Plane Displacement
An early application of speckle to metrology was for measurement of lateral in-plane displacement. Assume  that we are imaging a finite  region
on a rough object and we observe speckle in the image. The object then moves laterally and we wish to use a second exposure to determine the
amount of lateral movement. As  the object translates, the speckle in its image translates as well, but with some change as new scatterers move
into the fixed illuminated region and previous scatterers move out of the illuminated region.

We  assume that the optical imaging system is a 4f system of the same type we have used in other chapters. The  rough object lies in the front
focal plane of a positive lens with focal length f. In the rear focal plane of that lens there is an aperture, centered on the optical axis, that restricts
the area through which light can pass. At  one further focal length a second positive lens, again with focal length f, captures the light passed by
the aperture and passes it on to its rear focal plane where a filtered image of the rough surface is found.

First we generate a diffuser  representing the rough object that will be laterally translated. Again,  we smooth the diffuser  so that it has a finite
phase  correlation  length.  Next  we  define  a  finite  window  corresponding  to  the  finite  illumination  spot  on  the  diffuser.  This  window  remains
fixed  while the diffuser moves under it. The number of pixels in the simulation is  × ,   represents the width of the rectangular smoothing
functions that introduce correlations in the phase function of the diffuser,   ×  represents the area of the finite  illumination window on the
diffuser ( < ), and  ×  represents the area of the square focal-plane aperture.

First we establish the values of the parameters in the simulation.

In[ ]:= Clear[, , , ]

 = 512;  = 8;  = 256;  =  / 4;

The  diffuser  is  illuminated  by  a  finite  spot  of  light  of  dimension    ×    and  the  diffuser  translates  through  this  spot,  moving  new  diffuser
pixels  into  the  illuminated  spot  and  losing  some  old  diffuser  pixels  at  the  same  time.  We  have  chosen    to  be  256,  half  the  size  of  the  full
diffuser in this simulation. We  can then define the square window function on the diffuser:

In[ ]:= window = ParallelizeTablerecti - / 2   * rectj - / 2  , i, 1, , j, 1, ;

Next  we  generate  the  windowed  diffuser  with  smoothed  phase  and  calculate  its  complex  Fourier  spectrum,  centering  the  spectrum  at  indices
(/2,  /2).  In  order  to  generate  a  diffuser  spectrum  that  tapers  down  at  high  frequencies,  we  find  by  trial  and  error  that  a  choice  of  standard

deviation of 32π in uncorrelated and a choice of 8 for  yields the result shown below.  Other solutions are also possible, for example, a
smaller value of  and a smaller value of standard deviation.

In[ ]:= uncorrelated =

ParallelizeTableRandomVariateNormalDistribution[0, 32 * π], i, 1, , j, 1, ;

In[ ]:= kernel = ParallelizeTablerecti   * rectj  , i, -, , j, -, ;

In[ ]:= smooth = (1 / (2 *  + 1))^2 * ListConvolve[kernel, uncorrelated, 1];

In[ ]:= diffuser1 = Exp[I * smooth] * window;

In[ ]:= diffuserspectrum1 = RotateRightdftdiffuser1, { / 2,  / 2};

As used in previous chapters, the dft is a user-defined command that performs a discrete Fourier transform using the FFT algorithm.



In[ ]:= Clear[, ℬ, , ]

 = Absimageintens1 - imageintens2a;

ℬ = Absimageintens1 - imageintens2b;

 = Absimageintens1 - imageintens2c;

 = Absimageintens1 - imageintens2d;

In[ ]:= GraphicsGrid{{Image[], Image[ℬ]}, {Image[], Image[]}}, ImageSize  250

Out[ ]=

To recover the Gaussian phase bump on diffuser2, one method is to form the following calculation:

Δϕ = arctan
 +  -  - ℬ

 +  - ℬ - 
.

Define num as the numerator of the fraction and denom as the denominator:

In[ ]:= num =  +  -  - ℬ;
denom =  +  - ℬ - ;

Now form an image of the arctan, which should yield Δϕ.

In[ ]:= ImageArcTan[denom, num], ImageSize  200

Out[ ]=

There are two important questions to ask about this result. First, why are there rings in this image of Δϕ?  The answer is again that the method
recovers  Δϕ  only  modulo  2π;  and  the  rings  are  jumps  between  π  and  –π.  The  plot  below  shows  the  original  continuous  Gaussian  function
modulo 2π, and the rings are seen in this image, too, although they are much more narrow than in the result of the speckle calculation.

In[ ]:= f = Table12 * Pi * gausSqrti - / 2^2 + j - / 2^2  400, i, 1, , j, 1, ;

g = Modf, 2 * Pi;
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Appendix A – Some Subtleties in Speckle Simu-
lation With the 4f Imaging System

A.1  Effects on the Speckle Contrast
As  pointed  out  in  Section  1.3,  there  are  some  subtleties  associated  with  the  generation  of  simulated  speckle  using  the  4f  imaging  system  that
arise  from  the  finite  size  of  the  arrays  used  in  the  simulation.  The  phenomenon  involves  a  complicated  relationship  between  the  size  of  the
arrays used and the diameter of the focal-plane stop. It is possible to choose these parameters in such a way that the contrast of the speckle (i.e.,
the standard deviation of intensity normalized by the mean intensity) never achieves its ideal value of unity. Two  effects can be identified.

To  understand  these  effects,  it  is  helpful  to  consider  how  much  of  the  diffuser  contributes  to  the  value  of  intensity  at  any  single  point  in  the
image plane. With  a finite  focal-plane aperture diameter,  there is a weighting function on the diffuser that averages over a finite  region, adding
complex-valued sample points that contribute to the image amplitude and intensity at a point. The smaller the focal-plane aperture, the broader
that weighting function on the diffuser becomes; and the larger the diameter of the aperture, the narrower that weighting function becomes. 

The  sum  of  the  complex  phasors  within  that  averaging  region  generates  a  new  complex  phasor,  one  that  has  length  and  phase  determined  by
interference  between  the  complex  diffuser  pixels  lying  within  the  averaging  region.  If  the  focal-plane  aperture  is  1  pixel  in  diameter,  a  single
spectral sample passes the focal plane and the intensity in the image plane is constant, with contrast equal to zero for any single diffuser.  If the

focal-plane aperture has a diameter of size 2  or larger (this size circle covers the corners of the rectangular sample array), the extent of the
weighting function on the diffuser will be one pixel, covering only one phase cell of the diffuser.  The result is a pure phase image with contrast
zero.

Thus, we see that in the limits of small or large focal-plane apertures, the speckle contrast in the image can be reduced, either due to the small
number of phasors contributing to image intensity at an image point in the former case, or due to partial resolution of the pure phase diffuser in
the  latter  case.  See  the  figure  just  above  Section  3.4  in  Chapter  3  for  a  discussion  of  speckle  contrast  for  small  numbers  of  equal-strength
phasors.

A.2. Simulation With a Smoothed Phase
In  this  section  we  investigate  the  contrast  of  image  speckle  as  a  function  of  Fourier-plane  aperture  size,  starting  with  a  phase  that  has  been
smoothed to reduce aliasing. We  start with an  ×  = 1024 × 1024 array of statistically independent phase samples. Each phase sample is a
Gaussian  random  variable  with  zero  mean  and  standard  deviation  σ  =  25π.  The  choice  of  σ  is  made  in  conjunction  with  the  diameter  of  the
smoothing function to produce a diffuser Fourier spectrum that is tapered towards the edges, thus decreasing aliasing. The smoothing function
is a discrete approximation to a uniform circle with a diameter of  = 20 pixels. The standard deviation of the smoothed phase is calculated to
make sure it’s  reasonable. The diffuser is then calculated as a complex exponential with argument  times the smoothed phase, and the diffuser
spectrum is calculated. 

In[ ]:=  = 1024;
 = 20;

Clearuncorrelated, kernel, smooth, diffuser, diffuserspectrum, ;

uncorrelated = ParallelizeTableRandomVariateNormalDistribution[0, 25 * π], {}, {};

kernel = (1 / (π * ( / 2)^2)) *

TablecircSqrti - / 2^2 + j - / 2^2  ( / 2), i, 1, , j, 1, ;

smooth = ListConvolve[kernel, uncorrelated, 1];
diffuser = Exp[I * smooth];

diffuserspectrum = RotateRightFourierdiffuser, { / 2,  / 2};

The standard deviation of the smoothed phase is a reasonable number, given that we would like to have some excursions that exceed 2π.



Appendix B – Some Subtleties in Dealing with
Mathematica Images

In  the  chapters  of  this  book,  we  have  often  had  occasion  to  use  the  Mathematica  commands  Image[]  and ImageData[] when  moving

between numerical data and images. Given an array of real numbers, an image can be obtained by using the command Image[array], while to
go in the opposite direction, from an image to real numbers, the command ImageData[image] is used. There are some peculiarities of these
commands that we wish to point out here.

B.1 Dimensions of Data Arrays and Images
To  start,  we  define  an  array  of  random  real  numbers  that  lie  between  0  and  1,  intentionally  making  the  lengths  of  the  two  dimensions  of  the
array unequal:

In[73]:= data = TableRandomReal[], i, 1, 4, j, 1, 3

Out[73]= {{0.196136, 0.518268, 0.233036}, {0.756317, 0.0983559, 0.335059},
{0.478396, 0.604937, 0.662963}, {0.894975, 0.707075, 0.916227}}

The array can be shown in the form of a matrix:

In[74]:= MatrixForm[data]

Out[74]//MatrixForm=

0.196136 0.518268 0.233036
0.756317 0.0983559 0.335059
0.478396 0.604937 0.662963
0.894975 0.707075 0.916227

The dimensions of the array are:

In[75]:= Dimensions[data]

Out[75]= {4, 3}

Note that the first  number that Dimensions[] returns is the length of the columns of the matrix (the number of rows), while the the second
number is the length of the rows (the number of columns).

We  now create an image of the data:

In[76]:= myimage = Imagedata, ImageSize  150

Out[76]=
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