Paper
12 September 2003 Depth-resolved detection of electrokinetic effects in cartilage using differential phase sensitive optical coherence tomography
Author Affiliations +
Abstract
Osteoarthritis is a heterogeneous disease characterized by progressive loss of cartilage. The earliest biochemical features, which precede gross pathological changes, include non-uniform loss of proteoglycans associated with increase of water content in tissue and finally, fibrillation of the tissue's collagen network. Loss of proteoglycans decreases the ability of cartilage to withstand compressive loading and makes the tissue softer and more susceptible to wear and fibrilation. If the early loss of proteoglycans is detectable by a non-invasive optical technique, progression of the disease may be arrested using, for example, pharmacologic or surgical intervention. When an electric field is applied to cartilage by an electrical stimulator, the current-generated stress gradients are produced and stress deformation occurs. Since differential phase optical coherence tomography is very sensitive to subsurface stress deformation, we propose to stimulate cartilage electrically and detect stress gradients before gross signs of cartilage degeneration appear. Detection of depth-resolved electromechanical stress gradients in cartilage using differential phase optical coherence tomography may be useful to monitor non-invasively cartilage degeneration. Since the streaming potential and other electrokinetic effects in cartilage are directly proportional to proteoglycan density, application of an electric field in cartilage combined with depth-resolved phase sensitive optical measurements may provide a sensitive indicator of cartilage viability on the molecular-level.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jong-In Youn, Taner Akkin, Brian J. F. Wong M.D., George M. Peavy D.V.M., and Thomas E. Milner "Depth-resolved detection of electrokinetic effects in cartilage using differential phase sensitive optical coherence tomography", Proc. SPIE 4949, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII, (12 September 2003); https://doi.org/10.1117/12.485144
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Cartilage

Optical coherence tomography

Tissues

Copper

Phase measurement

Phase modulation

Polymethylmethacrylate

Back to Top