Paper
13 July 2004 A theoretical investigation of human skin thermal response to near-infrared laser irradiation
Author Affiliations +
Abstract
Near-infrared wavelengths are absorbed less by epidermal melanin mainly located at the basal layer of epidermis (dermo-epidermal junction), and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelength may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light followed by numerical solution of a bio-heat diffusion equation was utilized to investigate the thermal response of human skin to near-infrared laser irradiation, and compared it with that to visible laser irradiation. Additionally, the effect of skin surface cooling on epidermal protection was theoretically investigated. Simulation results indicated that 940 nm wavelength is superior to 810 and 1064 nm in terms of the ratio of light absorption by targeted blood vessel to the absorption by the basal layer of epidermis, and is more efficient than 595 nm wavelength for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. Dermal blood content has a considerable effect on the laser-induced peak temperature at the basal layer of epidermis, while the effect of blood vessel size is minimum.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Tianhong Dai, Brian M. Pikkula, Lihong V. Wang, and Bahman Anvari "A theoretical investigation of human skin thermal response to near-infrared laser irradiation", Proc. SPIE 5312, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIV, (13 July 2004); https://doi.org/10.1117/12.529146
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Skin

Blood vessels

Blood

Absorption

Pulsed laser operation

Cryogenics

Laser irradiation

Back to Top