Paper
6 December 2004 Mask topography effect in chromeless phase lithography
Author Affiliations +
Abstract
Different types of phase-shift masks (PSM) in combination with the proper illumination condition are widely used to allow 193nm lithography to print ever-decreasing pitches with a sufficient process window. A viable option for the 65nm node is Chromeless Phase Lithography (CPL), which combines a chromeless phase shift mask and 193nm off-axis illumination. It has been demonstrated that CPL has a high flexibility for through pitch imaging. Also concerning mask making CPL masks showed advantages over alternating and attenuated PSM [1]. This paper discusses how the mask quality and its topography influence the imaging performance of CPL. It is shown that mask topography is an important factor for CPL, as the imaging relies also on the quartz depth differences in the mask. The wafer image is sensitive to phase variations induced by the quartz etch depth and the sidewall profile. Their impact is separately studied using rigorous 3D mask electro-magnetic field simulations (Sigma-C Solid-CM). Correlation of experimental results to simulation explains that the observed pitch-dependent tilt in the Bossung curves is mainly related to the 3D character of the mask. In search for a global compensation valid through pitch, the simulation study also evaluates the effect of other contributors such as lens aberrations in the optical system, assist features and half-toning Cr zebra lines in the design. However, as the tilt is inherent to the CPL mask fabrication, a compensation of the Bossung tilt effect can only be obtained for specific combinations of all sources, as will be shown. We concentrate on the imaging of 70nm lines and 100nm contact holes in pitches ranging from dense up to isolated. The wafers are exposed on an ASML PAS5500/1100 ArF scanner working with a 0.75NA projection lens and various types of off-axis illumination. The wafers are evaluated on a top-down CD SEM (KLA-Tencor 8250XR).
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vicky Philipsen, Joost Bekaert, Geert Vandenberghe, Rik Jonckheere, Douglas Van Den Broeke, and Robert Socha "Mask topography effect in chromeless phase lithography", Proc. SPIE 5567, 24th Annual BACUS Symposium on Photomask Technology, (6 December 2004); https://doi.org/10.1117/12.568694
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications and 6 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Photomasks

Etching

Chromium

Quartz

Lithography

Semiconducting wafers

193nm lithography

Back to Top