Open Access
3 March 2014 Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo
Author Affiliations +
Abstract
Currently, laser fluence calibration is typically required for quantitative measurement of particle concentration in photoacoustic imaging. Here, we present a calibration-free method to quantify the absolute particle concentration by statistically analyzing photoacoustic signals. The proposed method is based on the fact that Brownian motion induces particle count fluctuation in the detection volume. If the count of particles in the detection volume is assumed to follow the Poisson distribution, its expected value can be calculated by the photoacoustic signal mean and variance. We first derived a theoretical model for photoacoustic signals. Then, we applied our method to quantitative measurement of different concentrations of various particles, including red blood cells. Finally, we performed in vivo experiments to demonstrate the potential of our method in biological applications. The experimental results agreed well with the predictions from the theoretical model suggesting that our method can be used for noninvasive measurement of absolute particle concentrations in deep tissue without fluence calibration.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2014/$25.00 © 2014 SPIE
Yong Zhou, Junjie Yao, Konstantin I. Maslov, and Lihong V. Wang "Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo," Journal of Biomedical Optics 19(3), 037001 (3 March 2014). https://doi.org/10.1117/1.JBO.19.3.037001
Published: 3 March 2014
Lens.org Logo
CITATIONS
Cited by 25 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Particles

Signal to noise ratio

In vivo imaging

Blood

Calibration

Photoacoustic spectroscopy

Photon counting

Back to Top