At the moment, manipulation of liquid microdroplets is required in various microfluidic and lab-on-a-chip devices, as well as advanced sensors. We report a new method for microdroplets manipulation, based on the use non-uniform electrostatic fields. Our platform uses an electrode array embedded in a dielectric planar superhydrophobic substrate produced by direct laser writing. When a voltage is applied to a certain sequence of electrodes, a non-uniform electrostatic field is produced, which acts to attract a droplet on the substrate to the electrodes. This achieves a stepwise movement of the droplet. We realized non-contact, selective and high-speed movement of the individual droplets along specified trajectories and their selective coalescence. In our opinion, this approach has a huge potential for chemical technology applications especially in optical sensors.
We present the results of direct laser-induced periodic surface structuring of semiconductors thin films (a-Si, a-Ge) deposited on glass substrate at different ambient environments (air, vacuum, nitrogen) resulting in regular gratings with the period of 600 nm to 900 nm at the laser wavelength of 1026 nm oriented either along (a-Si) or transverse (a-Ge) to the linear laser polarization direction. The processing speed has a different effect on morphology of obtained structures: on a-Si film, an increase of scanning speed leads to the reorientation of gratings and reduction of their period, while on a-Ge, the uniformity degradation and increase of the period are observed. Changing the ambient atmosphere from air to nitrogen and vacuum, when writing structures on a-Ge, helps to minimize the uniformity degradation and obtain highly regular nanogratings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.