Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolving the image using these estimates. Recent works have applied this marginal myopic deconvolution method, based on the maximum a posteriori estimator, combined with a parametric model of the PSF, to a series of AO-corrected astronomical and satellite images. However, this method does not enable one to infer global uncertainties on the parameters. We propose a PSF estimation method, which consists in choosing the minimum mean square error estimator and computing the latter as well as the associated uncertainties thanks to a Markov chain Monte Carlo algorithm. We validate our method by means of realistic simulations, in both astronomical and satellite observation contexts. Finally, we present results on experimental images for both applications: an astronomical observation on Very Large Telescope/spectro-polarimetric high-contrast exoplanet research with the Zimpol instrument and a ground-based LEO satellite observation at Côte d’Azur Observatory’s 1.52 m telescope with Office National d'Etudes et de Recherches Aérospatiales’s ODISSEE AO bench.
KEYWORDS: Point spread functions, Adaptive optics, Satellites, Optical transfer functions, Satellite imaging, Monte Carlo methods, Astronomy, Deconvolution
Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers from the lack of knowledge on the point spread function (PSF) in addition to usual difficulties. An efficient approach is to marginalize the object out of the problem and to estimate the PSF and (object and noise) hyperparameters only, before deconvolving the object using these estimates. Recent works have applied this marginal blind deconvolution method, combined to a parametric model of the PSF, to a series of AO corrected astronomical and satellite images. In this communication, we propose a new restoration method, which consists in choosing the Minimum Mean Square Error (MMSE) estimator and computing the latter thanks to a Markov chain Monte Carlo (MCMC) algorithm. We validate our method by means of realistic simulations, in two very different contexts: an astronomical observation on VLT/SPHERE and a ground-based LEO satellite observation on a 1.52m telescope. Finally, we present results on experimental images for both applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.