Sebastiano Aiello, Arnauld Albert, Sergio Alves Garre, Zineb Aly, Fabrizio Ameli, Michel Andre, Giorgos Androulakis, Marco Anghinolfi, Mancia Anguita, Gisela Anton, Miquel Ardid, Julien Aublin, Christos Bagatelas, Giancarlo Barbarino, Bruny Baret, Suzan Basegmez du Pree, Anastasios Belias, Meriem Bendahman, Edward Berbee, Ad van den Berg, Vincent Bertin, Vincent van Beveren, Simone Biagi, Andrea Biagioni, Matthias Bissinger, Markus Boettcher, Jihad Boumaaza, Mohammed Bouta, Mieke Bouwhuis, Cristiano Bozza, Horea Brânzas, Ronald Bruijn, Jurgen Brunner, Ernst-Jan Buis, Raffaele Buompane, Jose Busto, Barbara Caiffi, David Calvo, Antonio Capone, Victor Carretero, Paolo Castaldi, Silvia Celli, Mohamed Chabab, Nhan Chau, Andrew Chen, Silvio Cherubini, Vitaliano Chiarella, Tommaso Chiarusi, Marco Circella, Rosanna Cocimano, Joao A. Coelho, Alexis Coleiro, Marta Colomer Molla, Stephane Colonges, Rosa Coniglione, Imanol Corredoira, Paschal Coyle, Alexandre Creusot, Giacomo Cuttone, Antonio D'Amico, Antonio D’Onofrio, Richard Dallier, Mauro De Palma, Irene Di Palma, Antonio Díaz, Didac Diego-Tortosa, Carla Distefano, Alba Domi, Roberto Donà, Corinne Donzaud, Damien Dornic, Manuel Dörr, Doriane Drouhin, Thomas Eberl, Ahmed Eddyamoui, Thijs van Eeden, Daan van Eijk, Imad El Bojaddaini, Dominik Elsaesser, Alexander Enzenhoefer, Victor Espinosa Rosell, Paolo Fermani, Giovanna Ferrara, Miroslav Filipovic, Francesco Filippini, Luigi Antonio Fusco, Omar Gabella, Tamas Gal, Alfonso Andres Garcia Soto, Fabio Garufi, Yoann Gatelet, Nicole Geißelbrecht, Lucio Gialanella, Emidio Giorgio, Sara Gozzini, Rodrigo Gracia, Kay Graf, Dario Grasso, Giuseppe Grella, Daniel Guderian, Carlo Guidi, Steffen Hallmann, Hassane Hamdaoui, Hans van Haren, Aart Heijboer, Amar Hekalo, Juan Hernández-Rey, Jannik Hofestädt, Feifei Huang, Walid Idrissi Ibnsalih, Alin Ilioni, Giulia Illuminati, Clancy James, Peter Jansweijer, Maarten de Jong, Paul de Jong, Bouke Jisse Jung, Matthias Kadler, Piotr Kalaczyński, Oleg Kalekin, Uli Katz, Nafis Khan Chowdhury, Giorgi Kistauri, Frits van der Knaap, Els Koffeman, Paul Kooijman, Antoine Kouchner, Michael Kreter, Vladimir Kulikovskiy, Robert Lahmann, Giuseppina Larosa, Remy Le Breton, Ornella Leonardi, Francesco Leone, Emanuele Leonora, Jean Lesrel, Giuseppe Levi, Massimiliano Lincetto, Miles Lindsey Clark, Thomas Lipreau, Alessandro Lonardo, Fabio Longhitano, Daniel Lopez-Coto, Lukas Maderer, Jerzy Mańczak, Karl Mannheim, Annarita Margiotta, Antonio Marinelli, Christos Markou, Lilian Martin, Juan Martínez-Mora, Agnese Martini, Fabio Marzaioli, Stefano Mastroianni, Safaa Mazzou, Karel Melis, Gennaro Miele, Pasquale Migliozzi, Emilio Migneco, Piotr Mijakowski, Luis Miranda Palacios, Carlos Mollo, Mauro Morganti, Michael Moser, Abdelilah Moussa, Rasa Muller, David Muñoz Pérez, Paolo Musico, Mario Musumeci, Lodewijk Nauta, Sergio Navas, Carlo Nicolau, Brian Fearraigh, Mitchell O’Sullivan, Mukharbek Organokov, Angelo Orlando, Juan Palacios González, Gogita Papalashvili, Riccardo Papaleo, Cosimo Pastore, Alice Păun, Gabriela Păvălaş, Giuliano Pellegrini, Carmelo Pellegrino, Mathieu Perrin-Terrin, Paolo Piattelli, Camiel Pieterse, Konstantinos Pikounis, Ofelia Pisanti, Chiara Poirè, Vlad Popa, Thierry Pradier, Gerd Pühlhofer, Sara Pulvirenti, Omphile Rabyang, Fabrizio Raffaelli, Nunzio Randazzo, Soebur Razzaque, Diego Real, Stefan Reck, Giorgio Riccobene, Marc Richer, Stephane Rivoire, Alberto Rovelli, Francisco Salesa Greus, Dorothea F. Samtleben, Agustin Sánchez Losa, Matteo Sanguineti, Andrea Santangelo, Domenico Santonocito, Piera Sapienza, Jan-Willem Schmelling, Jutta Schnabel, Johannes Schumann, Jordan Seneca, Irene Sgura, Rezo Shanidze, Ankur Sharma, Francesco Simeone, Anna Sinopoulou, Bernardino Spisso, Maurizio Spurio, Dimitris Stavropoulos, Jos Steijger, Simona Stellacci, Mauro Taiuti, Yahya Tayalati, Enrique Tenllado, Tarak Thakore, Steven Tingay, Ekaterini Tzamariudaki, Dimitrios Tzanetatos, Veronique Van Elewyck, George Vasileiadis, Federico Versari, Salvo Viola, Daniele Vivolo, Gwenhael de Wasseige, Jörn Wilms, Rafał Wojaczyński, Els de Wolf, Dmitry Zaborov, Sandra Zavatarelli, Angela Zegarelli, Daniele Zito, Juan de Dios Zornoza, Juan Zúñiga, Natalia Zywucka
The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.
Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of the Acceptance Test Plan for the validation of the overall CTA system. In this contribution we present the organisation and the workflow of the Top Level Use Cases workgroup.
P. Cattaneo, A. Rappoldi, A. Argan, B. Buonomo, A. Bulgarelli, A. Chen, F. D'Ammando, L. Foggetta, F. Fuschino, M. Galli, F. Gianotti, A. Giuliani, F. Longo, M. Marisaldi, G. Mazzitelli, A. Pellizzoni, M. Prest, G. Pucella, L. Quintieri, M. Tavani, M. Trifoglio, A. Trois, P. Valente, E. Vallazza, S. Vercellone, G. Barbiellini, P. Caraveo, E. Costa, G. De Paris, E. Del Monte, G. Di Cocco, I. Donnarumma, Y. Evangelista, A. Ferrari, M. Feroci, M. Fiorini, M. Giusti, C. Labanti, I. Lapshov, F. Lazzarotto, P. Lipari, F. Lucarelli, S. Mereghetti, E. Morelli, E. Moretti, A. Morselli, L. Pacciani, F. Perotti, G. Piano, P. Picozza, M. Pilia, M. Rapisarda, A. Rubini, S. Sabatini, P. Soffitta, E. Striani, V. Vittorini, D. Zanello, S. Colafrancesco, P. Giommi, C. Pittori, P. Santolamazza, F. Verrecchia, L. Salotti
KEYWORDS: Monte Carlo methods, Calibration, Sensors, Target detection, Spectroscopy, Silicon, Optical simulations, Magnetic sensors, Photonics systems, Point spread functions
At the core of the AGILE scientific instrument, designed to operate on a satellite, there is the Gamma Ray
Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an
Anti-Coincidence system of plastic scintillator bars. The ST needs an on-ground calibration with a γ-ray beam to
validate the simulation used to calculate the energy response function and the effective area versus the energy and
the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility (BTF) of the INFN
Laboratori Nazionali of Frascati (LNF), based on an electron beam generating γ rays through bremsstrahlung in
a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron
energy1-.2 The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of
position sensitive silicon strip detectors, the Photon Tagging System (PTS). The use of the combined BTF-PTS
system as tagged photon beam requires understanding the efficiency of γ-ray tagging, the probability of fake
tagging, the energy resolution and the relation of the PTS hit position versus the γ-ray energy. This paper
describes this study comparing data taken during the AGILE calibration occurred in 2005 with simulation.
KEYWORDS: Monte Carlo methods, Point spread functions, Dispersion, Calibration, Matrices, Space telescopes, Telescopes, Sensors, Photon transport, Particles
AGILE is a γ/X-ray telescope which has been in orbit since 23 April 2007. The
γ-ray detector, AGILE-GRID,
has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog.
We present the calibration of the AGILE-GRID using in-flight data and updated Monte Carlo simulations,
producing response matrices for the effective area, energy dispersion, and point spread dispersion as a function
of pointing direction in instrument coordinates and energy.
We performed Monte Carlo simulations in GEANT3 at different
γ-ray photon energies and incident angles,
using Kalman filter-based photon reconstruction and on-board and on-ground filters. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.