Mammography is currently the primary imaging modality for breast cancer screening and plays an important role in cancer diagnostics. A standard mammographic image acquisition always includes the compression of the breast prior xray exposure. The breast is compressed between two plates (the image receptor and the compression paddle) until a nearly uniform breast thickness is obtained. The breast flattening improves diagnostic image quality1 and reduces the absorbed dose2 . However, this technique can also be a source of discomfort and might deter some women from attending breast screening by mammography3,4. Therefore, the characterization of the pain perceived during breast compression is of potential interest to compare different compression approaches. The aim of this work is to develop simulation tools enabling the characterization of existing breast compression techniques in terms of patient comfort, dose delivered to the patient and resulting image quality. A 3D biomechanical model of the breast was developed providing physics-based predictions of tissue motion and internal stress and strain intensity. The internal stress and strain intensity are assumed to be directly correlated with the patient discomfort. The resulting compressed breast model is integrated in an image simulation framework to assess both image quality and average glandular dose. We present the results of compression simulations on two breast geometries, under different compression paddles (flex or rigid).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.