Fibertek has developed a space qualifiable 50W 8Ch. WDM Amplifier prototype that is designed to meet all the environmental and optical requirements of a DSOC mission. The deliverd amplifier is optimized for efficiency and athermal performance achieving 22% e-o efficiency. The high TRL 1.5-μm high TL fiber amplifier supports up to 6W/channel, with >128-ary pulse-position-modulation (PPM) format, and with 25-nm gain-flat bandwidth. Output electro-optic characteristics, the System Reliability Analysis, Mechanical Thermal analysis and Mechanical Structural and Vibration analysis of the high TRL delivered laser prototype are presented. A power efficient TDM based FWM mitigation technique that improves PEV performance of Tx, is demonstrated.
51W average power, 7 Channel WDM Fiber Laser Transmitter with 25nm flat gain has been demonstrated for optical space communication applications. Power Amplifier supports >10kW/channel SBS limited peak power and achieves o-o efficiency 44%. Pulse energy variation (PEV) due to gain dynamics and four wave mixing of the PPM tx output is characterized. Significant improvement in PEV with wavelength dependent pre-pulse shaping is demonstrated. A high reliability 50W 8 WDM channel amplifier design is described. The amplifier will be housed in a high TRL small SWAP space laser package with dimensions 10.6x13.8x 5.3” and weighs 28.7 lbs
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.