In this paper a novel optical fiber interferometer structure for ultra-large dynamic range detection is proposed. The structure combines conventional 3×3 interferometer with optical differential 3×3 interferometer. And the sensing fiber of the conventional interferometer is used as the transmission fiber of the differential interferometer while sensing. When the external signal acts on the sensing fiber, the conventional coherent detection and differential coherent detection can be carried out simultaneously. Conventional interferometer is used to detect the normal phase change of interferometric signals. However differential interferometer can detect the difference of the phase change, that is, the undistorted phase compression signal. Then the actual signal waveform can be obtained by integrating the compressed signal, so that the detection of large signal can be realized. The simulation analysis and experimental results show that the dynamic range of 200dB can be obtained within 20Hz-10kHz band. The structure of combined interferometer uses continuous light injection and has the advantages of simple structure and low cost. It can be used to detect wide-band and ultra-large signal and has good application prospects.
In this paper, nonlinear noises that characterize the performance of a long-haul optical fiber sensing system were investigated. In a 50 km transmission system, when stimulated Brillouin scattering (SBS) occurs seriously, the phase noise of the interferometer increases from -102dB (0dB=1rad/sqrt(Hz)) to -84dB due to the enlargement of the laser linewidth and the deterioration of the signal-to-noise ratio (SNR). While the phase modulation (PM) and the Phase-generated carrier (PGC) modulation to the laser frequency are applied simultaneously, the suppression of SBS is 35dB and 10dB respectively in the backscattering spectra and the interferometric phase noise caused by SBS is completely eliminated. When the input power continues to increase and exceeds the modulation instability (MI) threshold, the system performance also deteriorates significantly. The forward output spectra of the 50 km optical fiber and phase noise of the interferometer are measured. The results show that with the increase of the injection power, the increase trend of the MI component in the total power of the spectrum is approximately consistent with that of the phase noise. It can be concluded that the phase noise introduced by MI is mainly caused by the increase of light intensity noise and the deterioration of optical SNR. Therefore, in order to reduce the impact of MI in the sensor system, it is needed to avoid the generation of serious MI as far as possible, and then the ultra-narrow band filter should be used to filter the MI sideband for the improvement of the system SNR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.