The most important aspect of digital terrain model generation from airborne laser scanning (ALS) data is that of filtering a point cloud to obtain ground points. Numerous automatic filters have been proposed since ALS data became available. However, to filter out nonground points, a slope threshold is usually introduced to classify points into ground and nonground points; this leads to frequent over-filtering problems in cliff-like terrains. A solution to this problem is proposed, using a dual-directional slope-based filter originating from a conventional slope-based filter is proposed. This filter is designed as a directional filter in one dimension and is applied to every profile of light detection and ranging (LiDAR) points. In this process, a directional filter is first applied to the profile, and another directional filter is then applied at an angle of 180 deg from the first one. Each directional slope-based filter is complementary to the others, thus avoiding over-filtering. We utilize ISPRS LiDAR data for the test. A comparison of this filter approach with existing methods is presented. The comparison result shows that the proposed method obtains a classification accuracy that is as good as most of the compared methods, but is superior to them with regard to handling data from abrupt surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.