We report a new biopolymer resist that uses functionalized N-acetylglucosamine (NAG) as a monomer and is suitable for direct laser writing (DLW). Since NAG is the monomeric unit of chitin, a biopolymer found in the exoskeletons of various arthropods, the resist expands the available DLW-suitable biopolymers from plant- to animal-based. Furthermore, we show that the simultaneous use of two different photoinitiators is advantageous over the use of only one initiator. Here, the first photoinitiator, which acts as a good two-photon absorber (2PA) for the wavelength used, radicalizes the second photoinitiator (poor 2PA), which is more suitable for crosslinking the NAG.
Inorganic, non-metallic materials exhibit interesting passive and active mechanical properties, when structured hierarchically down to the nanometer scale by biotemplating. While nature does provide a great wealth of structural templates, tailoring biotemplated materials' architectures on defined hierarchical levels is a desirable goal. We combine biotemplating techniques, developed earlier with two novel approaches to create tailored templates, namely the utilization of microbial phototaxis, and rheotaxis. The generally uncommon ductilities of biotemplated, hierarchically and anisotropically structured silica materials were determined and traced via a stick-slip model of parallel rods. Further, we observed passive moisture-driven bilayer actuation in silica structures derived from actuating biological templates, illustrating one of the attainable novel properties. With regard to the creation of tailored templates by phototaxis, the directions, velocities and patterns of movement of a selection of microbe species were found to depend on illumination brightness, wavelength, direction, and also the culturing conditions. Further, rheotactical structuring of first promising tailored templates was achieved in custom-built planar and cylindrical flow cells.
Conference Committee Involvement (3)
Bioinspiration, Biomimetics, and Bioreplication IX
4 March 2019 | Denver, Colorado, United States
Bioinspiration, Biomimetics, and Bioreplication VIII
5 March 2018 | Denver, Colorado, United States
Bioinspiration, Biomimetics, and Bioreplication VII
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.