KEYWORDS: Mirrors, Solar energy systems, Reflectivity, Energy efficiency, Infrared radiation, Solar energy, Gallium antimonide, Nonimaging optics, Infrared imaging, Visible radiation
A solar collector/receiver for a full-spectrum solar energy system is being designed by a research team lead by Oak Ridge National Laboratory and the University of Nevada, Reno. This solar energy system is unique in that it utilizes the majority of the solar spectrum. The collector/receiver is a modified Cassegrain system that uses a large parabolic mirror and a secondary mirror comprised of multiple planar segments. The secondary mirror segments are coated with a spectrally selective cold mirror coating that lets the infrared (IR) energy pass through while reflecting the visible light.
The focus of this paper is on determining whether a refractive or a reflective non-imaging (NI) tube will produce the most uniform irradiance of the IR energy on the thermophotovoltaic (TPV) array. It has been shown that a rectangular NI tube will work well for the prototype system3. The results herein show that a reflective NI tube will perform best for this system, with a short length, minimum/maximum flux ratio of 0.94 and power output of 37W. It is also shown that a square shaped TPV array can increase the optical efficiency by 9% and the overall system efficiency by 2%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.