An investigation of the effects of the radiation reaction force on radiation pressure acceleration is presented. Through 1D(3V) PIC code simulations, it is found that radiation reaction causes a decrease in the target velocity during the interaction of an ultra-intense laser pulse with a solid density thin foil of varying thickness. This change in the target velocity can be related to the loss of backwards-directed electrons due to cooling and reflection in the laser field. The loss of this electron population changes the distribution of the emitted synchrotron radiation. We demonstrate that it is the emission of radiation which leads to the observed decrease in target velocity. Through a modification to the light sail equation of motion (which is used to describe radiation pressure acceleration in thin foils), which accounts for the conversion of laser energy to synchrotron radiation, we can describe this change in target velocity. This model can be tested in future experiments with ultra-high intensity lasers, and will lead to a better understanding of the process of relativistically induced transparency in the new intensity regime.
The radiation pressure of next generation high-intensity lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these lasers with matter. We show that these quantum-electrodynamic effects lead to the production of a critical density pair-plasma which completely absorbs the laser pulse and consequently reduces the accelerated ion energy and efficiency by 30-50%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.