The most prevalent fungal pathogen in humans Candida albicans expresses on its surface Als (Agglutinin-like sequence) proteins which mediate both yeast-to-host tissue adherence and yeast aggregation. Although adhesins often show weak binding to specific ligands, Als mediate remarkably strong adherence. By combining single-molecule atomic force microscopy (AFM) with the tools of genetics and cell biology, we unraveled the various Als protein domains to understand how they synergize to strengthen the cell adhesion and aggregation. The complementary role of the ligandbinding domains, amyloid-forming regions and the less specific hydrophobic tandem repeat domains give raise to a fascinating new mechanism of cell-activation resulting in force-activated clustering of hundreds of adhesion molecules. The amyloid heptapeptide sequence plays a crucial role in this mechanism providing a cohesive strength to the Als protein by forming molecular zipper that mediates protein interactions between cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.