The presence of atmospheric turbulence in the free space causes fading and degrades the performance of a free space optical (FSO) system. To mitigate the turbulence-induced fading, multiple copies of the signal can be transmitted on a different wavelength. Each signal, in this case, will undergo different fadings. This is known as the wavelength diversity technique. Bit error rate (BER) performance of the FSO systems with wavelength diversity under strong turbulence condition is investigated. K-distribution is chosen to model a strong turbulence scenario. The source information is transmitted onto three carrier wavelengths of 1.55, 1.31, and 0.85 μm. The signals at the receiver side are combined using three different methods: optical combining (OC), equal gain combining (EGC), and selection combining (SC). Mathematical expressions are derived for the calculation of the BER for all three schemes (OC, EGC, and SC). Results are presented for the link distance of 2 and 3 km under strong turbulence conditions for all the combining methods. The performance of all three schemes is also compared. It is observed that OC provides better performance than the other two techniques. Proposed method results are also compared with the published article.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.