Andre Fehlmann, Cynthia Giebink, Jeffrey Kuhn, Ernesto Messersmith, Donald Mickey, Isabelle Scholl, Don James, Kirby Hnat, Greg Schickling, Richard Schickling
The Cryogenic Near Infrared Spectropolarimeter for the Daniel K Inouye Solar Telescope is designed to measure polarized light from 0.5 to 5 μm. It uses an almost all reflective design for high throughput and an R2 echelle grating to achieve the required resolution of up to R = 100,000. The optics cooled to cryogenic temperatures reduce the thermal background allowing for IR observations of the faint solar corona. Both the spectrograph and its context imager use H2RG detector arrays with a newly designed controller to allow synchronized exposures at frame rates up to 10 Hz. All hardware has been built and tested and the key components met their design goals. 1) The cryogenic system uses mechanical closed cycle coolers which introduce vibrations. Our design uses a two stage approach with a floating mounting disk and flexible cold links to reduce these. The vibration amplitudes on all critical stages were measured and are smaller than 1μm. 2) The grating stage of the spectrograph uses a double stack of harmonic drives and an optical encoder to provide sub-arcsecond resolution and a measured repeatability of better than 0.5 arcsec.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.