This paper presents a means for creating optical fiber sensors that are capable of detecting electric fields. This
novel E-field sensor is formed as part of a contiguous fiber resulting in a flexible and small cross-section device
that could be embedded into electronic circuitry. The sensor is formed by partially etching out the core of a
D-shaped optical fiber and depositing an electro-optic polymer. Using PMMA and DR1 for proof of concept,
we demonstrate the operation of the first in-fiber hybrid waveguide electric field sensor with a sensitivity of less
than 100 V/m at a frequency of 2.9 GHz. Sensors optimized for low loss (~1dB) have an estimated E&pgr; of 222
MV/m. A sensor with an E&pgr; of 60 MV/m is also demonstrated with an insertion loss of 14.4 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.