Thermal imaging cameras are widely used in military contexts for their night vision capabilities and their observation range; there are based on passive infrared sensors (e.g. MWIR or LWIR range). Under bad weather conditions or when the target is partially hidden (e.g. foliage, military camouflage) they are more and more complemented by active imaging systems, a key technology to perform target identification at long range. The 2D flash imaging technique is based on a high powered pulsed laser source that illuminates the entire scene and a fast gated camera as the imaging system. Both technologies are well experienced under clear meteorological conditions; models including atmospheric effects such as turbulence are able to predict accurately their performances. However, under bad weather conditions such as rain, haze or snow, these models are not relevant. This paper introduces new models to predict performances under bad weather conditions for both active and infrared imaging systems. We point out their effects on controlled physical parameters (extinction, transmission, spatial resolution, thermal background, speckle, turbulence). Then we develop physical models to describe their intrinsic characteristics and their impact on the imaging system performances. Finally, we approximate these models to have a “first order” model easy to deploy for industrial applications. This theoretical work will be validated on real active and infrared data.
KEYWORDS: 3D modeling, Imaging systems, Fiber optic gyroscopes, Sensors, Atmospheric propagation, Air contamination, 3D image processing, Backscatter, Systems modeling, 3D acquisition
Onera, the French Aerospace Lab, develops and models 2D and 3D active imaging systems to understand the relevant
physical phenomena impacting on their performances. As a consequence, efforts have been done both on the propagation
of a pulse through the atmosphere (scintillation and turbulence effects) and, on target geometries and their surface
properties (radiometric and speckle effects). But these imaging systems must operate at night in all ambient illuminations
and weather conditions in order to perform the strategic surveillance of the environment for various worldwide
operations or to perform the enhanced navigation of an aircraft (A/C). Onera has implemented codes for 2D and 3D laser
imaging systems. As we aim to image a scene even in the presence of rain, snow, fog or haze, Onera introduces such
meteorological effects in these numerical models and compares simulated images with measurements provided by
commercial imaging systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.