The edge-emitting laser diodes (EELs) are widely used due to their superior performance, however, the strongly asymmetric beam profile along the fast and slow axes presents a big challenge in the beam shaping of EEL. Traditional optical devices mainly focus on adjusting the asymmetric divergence angle of the fast and slow axes of the EEL, and it is difficult to achieve flexible and precise control of the luminous distribution of the EEL due to the limited freedom of the conventional beam-shaping elements. In this article, we employ freeform lenses to flexibly reshape EEL beams and develop an approach to tackle the obstacles caused by the strongly asymmetric beam profile by generalizing the Monge– Ampère method to tailor freeform beam-shaping lenses for EELs. Three typical but challenging beam-shaping tasks show that both the intensity and wavefront of an EEL beam can be reshaped in a desired manner by the use of a single compact freeform lens without any symmetric restrictions on the architecture of the beam-shaping system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.