SignificanceArtificial intelligence (AI) has become a prominent technology in computational imaging over the past decade. The expeditious and label-free characteristics of quantitative phase imaging (QPI) render it a promising contender for AI investigation. Though interferometric methodologies exhibit potential efficacy, their implementation involves complex experimental platforms and computationally intensive reconstruction procedures. Hence, non-interferometric methods, such as transport of intensity equation (TIE), are preferred over interferometric methods.AimTIE method, despite its effectiveness, is tedious as it requires the acquisition of many images at varying defocus planes. The proposed methodology holds the ability to generate a phase image utilizing a single intensity image using generative adversarial networks (GANs). We present a method called TIE-GANs to overcome the multi-shot scheme of conventional TIE.ApproachThe present investigation employs the TIE as a QPI methodology, which necessitates reduced experimental and computational efforts. TIE is being used for the dataset preparation as well. The proposed method captures images from different defocus planes for training. Our approach uses an image-to-image translation technique to produce phase maps and is based on GANs. The main contribution of this work is the introduction of GANs with TIE (TIE:GANs) that can give better phase reconstruction results with shorter computation times. This is the first time the GANs is proposed for TIE phase retrieval.ResultsThe characterization of the system was carried out with microbeads of 4 μm size and structural similarity index (SSIM) for microbeads was found to be 0.98. We demonstrated the application of the proposed method with oral cells, which yielded a maximum SSIM value of 0.95. The key characteristics include mean squared error and peak-signal-to-noise ratio values of 140 and 26.42 dB for oral cells and 100 and 28.10 dB for microbeads.ConclusionsThe proposed methodology holds the ability to generate a phase image utilizing a single intensity image. Our method is feasible for digital cytology because of its reported high value of SSIM. Our approach can handle defocused images in such a way that it can take intensity image from any defocus plane within the provided range and able to generate phase map.
Lensless microscopes are simple, portable, and cost effective compared with the sophisticated microscopes of today that require high-end objectives, lenses, and filters. We demonstrate a lensless on-chip phase microscope based on the holographic principle to image 3D nanometric depth information from transparent and weakly scattering biological samples. We characterize the microscope using standard quantitative phase resolution target (PRT) charts with feature depths from 50 to 350 nm and report a signal-to-noise ratio value of 23 dB. Further, we apply a gradient descent-based constrained optimization approach for phase retrieval to eliminate the twin image and noise from the hologram. The device, operating as an inline holographic microscope, can perform quantitative phase imaging with nanometric depth sensitivity for a field of view of 29.4 mm2 using an LED-based light source butt-coupled to an optical fiber cable.
Conventional cytology is a rapid chair-side method for diagnosis, but it relies on laborious fixing and staining protocols. As cytology specimens are transparent, it is very hard to visualize them under a bright-field microscope without staining. Quantitative phase imaging techniques have opened up an interesting and potential diagnostic method for volumetric three-dimensional (3-D) visualization of the transparent specimens without any need for sample preparations. We explore the use of digital holographic microscopy in clinical application of oral cytology for the 3-D visualization of buccal cells with high contrast without any additional sample preparations. We also propose nuclear to cytoplasmic (N / C) volumes as a much more accurate parameter for identification of multinucleate and actively dividing cells. We quantify the cellular volumes, and N / C ratios for 203 buccal cells taken from five healthy volunteers to clinically validate the technique and compare them with the traditional N / C area ratios as well as the histology standards. The mean N / C area and volume ratios are found to be 0.0322 ± 0.0149 and 0.0648 ± 0.0286, respectively. Our approach highlights the dawn of a new method for a label-free/nondestructive volumetric oral cytology evaluation, with high potential for exploration of suspicious oral lesions, in subjects with chronic habits such as alcoholism and tobacco use.
Digital holographic microscopy (DHM) is a quantitative phase imaging (QPI) modality, which retrieves 3D object phase information. The quantification of subcellular features within the object is possible. Its single-shot hologram recording feature makes it suitable for real-time imaging applications. This paper discusses QPI capability of LED-based digital inline holographic microscopy (LDHM), which has gained much attention for its portability, cost-effective features. However, the twin image artifact is present in the inline setup. Though several twin image reduction and elimination methods are developed, the exact phase quantification is always a challenge. Original phase information may be lost after elimination of twin image. There is always a trade-off between twin-image elimination and QPI of inline microscopy setup. This paper discusses the QPI capability of LDHM in comparison with the conventional off-axis DHM. Further, the results of phase objects using both the methods are studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.