In the past few years, Artificial Intelligence (AI) has been a subject of intense media hype. Machine learning, deep learning (DL), and AI come up in countless articles, often outside of technology-minded publications. As the AI hype keeps growing, it is important to be able to recognize the signal in the noise, to tell apart world-changing developments from what are merely over-hyped press releases. This paper tries to explain how deep learning is working and how GPU (Graphic Processing Unite) can make it a reality. Finally, in-memory computing (IMC) for DL is introduced to point out future high performance and low power DL hardware development direction.
Phase change material (PCM)-based memory cells have shown promise as an enabler for low power, high density memory. There is a current need to develop and improve patterning strategies to attain smaller device dimensions. In this work, two methods of patterning of PCM device structures was achieved using directed self-assembly (DSA) patterning: the formation of a high aspect ratio pore designed for atomic layer deposition (ALD) of etch damage-free PCM, and pillar formation by image reversal and plasma etch transfer into a PCM film. We show significant CD reduction (180 nm to 20 nm) of a lithographically defined hole by plasma etch shrink, DSA spin-coat and subsequent high selectivity pattern transfer. We then demonstrate structural fabrication of both DSA-defined SiN pores with ALD PCM and DSA-defined PCM pillars. Challenges to both pore and pillar fabrication are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.