Mask repair is an essential step in the manufacturing process of extreme ultraviolet (EUV) masks. Its key challenge is to continuously improve resolution and control to enable the repair of the ever-shrinking feature sizes on mask along the EUV roadmap. The state-of-the-art mask repair method is gas-assisted electron-beam (e-beam) lithography also referred to as focused electron-beam induced processing (FEBIP). We discuss the principles of the FEBIP repair process, along with the criteria to evaluate the repairs, and identify the major contributions determining the achievable resolution. As key results, we present several high-end repairs on EUV masks including a sub-10-nm extrusion achieved with the latest generation of e-beam-based mask repair tools, the MeRiT® LE. Furthermore, we demonstrate the corresponding repair verification using at-wavelength (actinic) measurements.
Scaling trends in the semiconductor industry towards smaller technology nodes and feature sizes are continuing and first consumer products manufactured with the help of EUV technology are already on the market. Major industrial players have introduced EUV lithography into their production at the 7nm technology node and with the 5nm node being on its way [1], the amount of EUV lithographic layers is expected to rise significantly and implementation of EUV double patterning is anticipated. These developments lead to more strict technological requirements especially for the corresponding EUV but also for the used high-end DUV photomasks in terms of minimum feature sizes and acceptable Edge Placement Errors (EPE). Moreover, photomask defectivity increases dramatically with shrinking feature sizes. This creates significant challenges to the industry, as in particular the most cost intensive EUV photomasks possess the highest numbers of defects. The current industry standard for high-end photomask repair tools is the MeRiT neXT [2]. To face the upcoming challenges an efficient and reliable way to repair future high-end photomasks is inevitable. A corresponding repair tool must address decreased minimum feature sizes and increased pattern complexity on high-end photomasks. In this paper we present our latest results of high-end EUV repairs carried out on the next generation photomask repair tool MeRiT LE. The tool shows improved system dynamics, makes use of a new electron beam column, which operates at a low electron beam voltage down to 400V and enables the repair of next generation ultra-small defects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.