Optical ground-to-space links (OGSL) are characterised by a highly dynamic channel, due to optical beam propagation through the atmospheric turbulence, leading to link power outages (also known as fades). The study of such stochastic fading process is an essential task to estimate the performance of OGSLs. The most common simulation methods used require an excessive computation time, hence are incompatible for network-wide simulations with a high number of possible links to simulate. A time-efficient alternative is provided by a random power vector generation approach which leverages on the knowledge of the power outages statistics and power spectral density (PSD). In this work, a modelling approach based on a Butterworth filter construction is presented as an effective solution to define the power outages PSD. The advantages of such method are displayed and the results are compared to OGSL simulation data obtained via a validated, alternative approach.
Laser-induced graphene (LIG) has drawn immense interest among researchers worldwide since its development in 2015. The laser writing strategy used to synthesize LIG is particularly advantageous, as it enables the direct patterning of graphene with micron-sized features. There have been many attempts to reduce the feature size of LIG in recent years, however, the studies have shown wide variations in the methods and findings. As such, this work presents a rigorous study on the irradiation of polyimide via an ultraviolet (355-nm) laser to realize micron-scale, high-quality LIG. Our work shows that there is often a tradeoff between micron-scale features and high-quality material, as the tightly focused beams that are demanded for small features are predisposed to ablation of the material. This work investigates such LIG synthesis by correlating the characteristics of the material, via scanning electron microscopy and Raman spectroscopy, to the optical fluence incident on the polyimide substrate, providing a measure of applied optical energy per unit area. The findings reveal that—given suitable attention to the optical fluence—high-quality LIG with Raman 2D-to-G peak height ratios approaching 0.7 can be synthesized with feature sizes down to 18 ± 2 μm. Furthermore, optical fluences between 40 to 50 J/cm2 produced the optimal LIG characteristics, as such optical fluences promote graphenization while minimizing ablation. The authors hope the findings of this study provide a foundation for the use of LIG in future integrated technologies.
In this work, we consider the design of a self-referencing interferometer for wavefront sensing. The design is put forward as a key element for adaptive optics systems implementing laser-based (free-space optical) communication through the atmosphere. The self-referencing interferometer is pursued given its ability for operation under weak through strong atmospheric turbulence conditions. This sets it apart from traditional wavefront sensing systems, which can falter under strong turbulence conditions. The self-referencing interferometer takes the form of a traditional (Michelson) interferometer with the input beam, having wavefront/phase distortion across its transverse profile, split into signal and reference arms. The signal beam is subjected to a linear tilt, while the reference beam undergoes spatial filtering/aperturing to give it a sufficiently flat wavefront/phase profile. The signal and reference beams are then overlapped at the output of the interferometer, and the output beam is imaged on a camera. The image is processed to extract a profile of the distorted wavefront/phase across the input beam, with the conjugate of this distorted wavefront/phase profile applied to a deformable mirror for its correction. In this work, we consider the key design parameters for such a system, operating at a wavelength of 1550 nm, with particular thought given to the levels of linear tilt on the signal beam and spatial filtering/aperturing on the reference beam. We illustrate the sensitivity of the output characteristics to these levels and provide recommendations for optimal functioning of self-referencing interferometers in future laser-based (free-space optical) communication systems.
Free-Space Optical Communication (FSOC) links between Earth-based Optical Ground Stations (OGSs) and satellites offer immense potential to securely and efficiently exchange vast amounts of information with worldwide coverage. However, atmospheric turbulence inhibits this potential by distorting laser beams, as they propagate through the atmosphere. Adaptive Optics (AO) systems are typically employed at the OGS to correct for these adverse effects and can increase the efficiency of laser light being coupled into an optical fibre for a downlink laser beam. Concurrently, the same AO system can be used to increase the coupling of laser light into an orbiting satellite by pre-distorting the uplink laser beam. In such a scenario, the downlink laser beam is used to measure the distortions that are applied by the atmosphere, and the conjugate of these distortions can then be applied to the uplink laser beam. The atmosphere then corrects the pre-distorted beam, resulting in a flat wavefront at the top of the atmosphere, as well as stable and efficient coupling of light into the satellite. This work showcases the successful experimental ground-to-satellite links in the spring of 2023 between DLR’s recently commissioned OGS and TESAT’s laser communications terminal (LCT-135)—i.e., part of the Technology Demonstration Payload No. 1 (TDP-1) on the geostationary satellite, Alphasat. Pre-distortion was successfully applied via an AO system testbed within the OGS, which resulted in extremely power efficient bi-directional tracking links with Alphasat. The findings of this work show that the application of pre-distortion AO not only improves the coupling of laser light at the satellite, but also reduces the scintillation experienced at the satellite, thus improving the robustness of the link.
Free Space Optical Communications (FSOC) links with satellites are limited by atmospheric turbulence in up and downlink. Adaptive Optics (AO) systems at the Optical Ground Station (OGS) can mitigate the adverse effects on the uplink by “predistorting” the transmitted laser beam such that its wavefront is corrected by the turbulence. The Point Ahead Angle (PAA) means that the downlink light is not a perfect wavefront reference for the AO system. GEOStar is a project created to demonstrate the feasibility of using a Laser Guide Star (LGS) in the direction of the uplink path to enable better predistortion of the transmitted beam. A novel setup uses a sub-pupil of the 1m diameter ESA-OGS to transmit the communications light to the satellite and a sub-pupil on the opposite side of the telescope aperture is used to launch the LGS. An LGS WFS observes the light from the LGS whilst a similar Near Infra-Red WFS observes downlink light from the satellite such that the measurements can be directly compared. A deformable mirror is used to predistort the uplink beam. The system is currently being integrated ready for shipment to Tenerife and measurements with the optical terminal TDP-1 on AlphaSat are scheduled for Q2 2024.
In this work, we introduce the concept of a hemispherical retro-modulator for the realization of passive free-space optical communication links. The hemispherical retro-modulator is implemented with a high-refractive-index glass (S-LAH79) hemisphere on a semi-insulating-InP (SI-InP) layer, whose thickness dictates the effectiveness of both retroreflection and modulation. A voltage is applied across transparent indium tin oxide (ITO) and gold (Au) films on either side of the SIInP layer to bring about the desired modulation. The overall device is designed to enable low divergence on the retroreflected beam, as defined by a small divergence angle, and deep modulation on the retroreflected beam, as a result of electroabsorption in the SI-InP layer. To this end, the device is analysed with a ray-based model for retroflection and a unified Franz-Keldysh/Einstein model for modulation in the SI-InP layer. The theoretical results show strong agreement with the experimental results from our prototype. Moreover, the results show effective retroflection and deep modulation—with an applied electric field of 2.167 kV/cm yielding modulation depths of 13%, 34%, and 50% for our 980-nm photons and SI-InP layer thicknesses of 200, 600, and 1,000 μm, respectively. From this, we deem the SI-InP layer thickness of 600 μm to be optimal given its combined capabilities for retroflection and modulation. Ultimately, the introduced hemispherical retro-modulator is shown to be an effective element for future realizations of passive freespace optical communication links.
In this work, we explore the band edge absorption characteristics of semiconductors as applied to optoelectronic modulation—with careful consideration to the departures from ideality in the semiconductors. To this end, we develop a rigorous model of electroabsorption in semiconductors that characterizes the electric-field-induced constriction/narrowing of the bandgap and the resulting increase in absorption of photons, whose energies are slightly below the bandgap energy. The model unifies the Franz-Keldysh effect, characterizing the electric-field-induced tunneling of photoexcited electrons from valence band states to conduction band states, and the Einstein model, quantifying the encroachment of valence and conduction band states into the bandgap. Careful consideration is given here to the nonidealities in the semiconductor, which arise within the valence band as degenerate states, due to light and heavy holes, and within the bandgap, as encroaching Urbach tail states. We apply the model in characterizing optoelectronic modulation of 980-nm photons with semi-insulating indium phosphide (SI-InP), and we see strong agreement between our theoretical and experimental results over a wide range of electric fields and photon energies. Ultimately, the findings show that optoelectronic modulation can be had with large modulation depths over short propagation lengths through the semiconductor. This opens the door to highly effective implementations of optoelectronic modulators in emerging free-space optical communication systems—given that such modulators do not allow for prolonged (guided-wave) propagation and have thus exhibited small modulation depths.
A thorough investigation of copper oxide, specifically cupric oxide (CuO), is performed in the following work with a focus on CuO’s ultrafast free-carrier dynamics and bandstructure. An above-bandgap control beam and below-bandgap signal beam are utilized in transient absorption spectroscopy to gain insight on CuO nanocrystals’ recombination and relaxation dynamics at varying control beam fluences. The authors witnessed three distinct time constants, the first of which changed with control beam fluence between 330 and 630 fs, while the second and third remained constant at 2 ps and 50 ps, respectively. The first time constant is attributed to momentum relaxation from valence band carrier-carrier scattering and exciton-exciton annihilation. The second time constant is attributed to energy relaxation from valence band carrier-phonon scattering. The third time constant is attributed to trapping and recombination as a result of the CuO nanocrystals’ increased trap state density. The findings of this work provide a basis for future research on this emerging CuO nanocrystal system.
This work puts forward new technologies for free-space optical communications, with emphasis on deployments between ground and aerial transceivers. The proposed system targets the challenges of these aerial-ground links by applying direct laser transmission for the ground-to-aerial active uplink and applying all-optical retro-modulation (AORM) for the aerial-to-ground passive downlink. It is shown that such a system can function with multiple ground transceivers, over wide service coverage, and one aerial transceiver, with low demands for its mass and power. The AORM architecture applied in the passive downlink implements glass S-LAH79 hemispheres for effective retroreflection and CuO nanocrystal semiconductor thin film layer for all-optical modulation on ultrafast timescale. The fabricated AORM architecture is demonstrated to have an system response time of 770 fs, which limits the aggregate data rate. Such a fast system response establishes the possibility of terabit-per-second data rates. Ultimately, these findings can lay the foundation for future laser-based terabit-per-second links between satellites, unmanned aerial vehicles, and high-altitude platforms.
There are severe limitations that photoconductive (PC) terahertz (THz) antennas experience due to Joule heating and ohmic losses, which cause premature device breakdown through thermal runaway. In response, this work introduces PC THz antennas utilizing textured InP semiconductors. These textured InP semiconductors exhibit high surface recombination properties and have shortened carrier lifetimes which limit residual photocurrents in the picoseconds following THz pulse emission—ultimately reducing Joule heating and ohmic losses. Fine- and coarse-textured InP semiconductors are studied and compared to a smooth-textured InP semiconductor, which provides a baseline. The surface area ratio (measuring roughness) of the smooth-, fine-, and coarse-textured InP semiconductors is resolved through a computational analysis of SEM images and found as 1.0 ± 0.1, 2.9 ± 0.4, and 4.3 ± 0.6, respectively. The carrier lifetimes of the smooth-, fine-, and coarse-textured InP semiconductors are found as respective values of 200 ± 6, 100 ± 10, and 20 ± 3 ps when measured with a pump-probe experimental system. The emitted THz electric fields and corresponding consumption of photocurrent are measured with a THz experimental setup. The temporal and spectral responses of PC THz antennas made with each of the textured InP semiconductors are found to be similar; however, the consumption of photocurrent (relating to Joule heating and ohmic losses) is greatly diminished for the semiconductors that are textured. The findings of this work can assist in engineering of small-scale PC THz antennas for high-power operation, where they are extremely vulnerable to premature device breakdown through thermal runaway.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.