Optical coherence tomography is a powerful imaging technique to visualize and localize depth-dependent tissue structure to differentiate between healthy and pathological conditions. However, conventional OCT systems are only capable of detecting small areas. To overcome this limitation, we have developed a large area robotically assisted OCT (LARA-OCT) system for automatic acquisition of large OCT images. Using mosaic pattern acquisition and subsequent stitching, we previously demonstrated initial in vivo OCT skin images beyond 10 cm². To improve acquisition speed and reduce dead times, we here demonstrate and analyze LARA-OCT with a new drive-by continuous motion imaging protocol.
Optical coherence tomography (OCT) is a powerful imaging technique to non-invasively differentiate between healthy skin and pathological conditions. Unfortunately, commercially available OCT-systems are typically slow and not capable of scanning large areas at reasonable speed. Since skin lesions may extend over several square centimeters, potential inflammatory infiltrates remain undetected. Here, we present large area robotically assisted OCT (LARA-OCT) for skin imaging. Therefor a collaborative robot is combined with an existing, home-built 3.3 MHz-OCT-system and for surface tracking an online probe-to-surface control is implemented which is solely based on the OCT surface signal. It features a combined surface-distance and surface-orientation closed-loop control algorithm, which enables automatic positioning and alignment of the probe across the target while imaging. This allows to acquire coherent OCT images of skin areas beyond 10 cm2.
The routine pathology workflow relies on cutting tissue into single-cell layer thick slices using paraffin or frozen sectioning. We propose a fast method to obtain sections of equivalent quality optically using the strong sectioning capabilities of two-photon microscopy (TPM). Hematoxylin and eosin (HE) equivalent staining of the tissue is achieved using acridine orange and sulforhodamine 101. We improved our previously presented pulsed fiber laser to deliver adjustable pulse durations of ~30ps at repetition rates of up to 16MHz and kW peak power. We can now image up to one square centimeter of tissue with sub-micrometer resolution within 15 minutes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.