Metasurfaces present novel prospects for compacted quantum technologies by providing precise manipulation of amplitude, phase, and polarization of the incident light. Utilizing the advanced polarization control and multiplexing capabilities of metasurfaces, the capacity for detecting and processing quantum information can be enhanced. In this work, we optimize metasurface fabrication using electron-beam lithography and develop a custom SEM image recognition program for precise structure assessment and improved imaging quality. We achieve holographic imaging under quantum state incidence, enabling the reconstruction of quantum state information from the resulting meta-holography.
Here we present the experimental distribution of four-dimensional entangled qudits between integrated photonic devices. Qudits offer advantages over qubits such as higher information capacity, and improved noise robustness. Integrated photonics allows for the reliable preparation and manipulation of large-scale entangled quantum states on a single device, with outstanding phase stability. However, reliable transmission of these states between devices, integrated or otherwise, has been a challenge, mainly due to the difficulty of maintaining phase stability between multiple optical channels. We implement an active phase stabilisation algorithm, utilising the same circuitry as for the quantum states, enabling stable distribution of qudits.
Controlling and programming quantum devices to process quantum information by the unit of qudit shows great potential to enhance the capabilities of qubit-based quantum technologies. Here, we report a programmable qudit-based quantum processor in silicon-photonic integrated circuits and demonstrate its enhancement of quantum computational parallelism. The processor monolithically integrates all the key functionalities and capabilities of initialisation, manipulation, and measurement of the two-ququart states and multi-value quantum-controlled logic gates with high-level fidelities. We implemented the basic quantum Fourier transform algorithms to benchmark the enhancement of quantum parallelism using qudits, allowing the implementations of more than one million high-fidelity preparations, operations and projections of qudit states in the processor. Our work shows an integrated quantum technology for qudit-based quantum computing with enhanced capacity, accuracy, and efficiency.
Bohr’s complementarity is one central tenet of quantum physics. The paradoxical wave-particle duality of quantum matters and photons has been tested in Young’s double-slit (double-path) interferometers. The object exclusively exhibits wave and particle nature, depending measurement apparatus that can be delayed chosen to rule out too-naive interpretations of quantum complementarity. All experiments to date have been implemented in the double-path framework, while it is of fundamental interests to study complementarity in multipath interferometric systems. Here we demonstrate generalised multipath wave-particle duality in a quantum delayed-choice experiment, implemented by large-scale silicon-integrated multipath interferometers. Single-photon displays sophisticated transitions between wave and particle characters, determined by the choice of quantum-controlled generalised Hadamard operations. We characterise particle-nature by multimode which-path information and wave-nature by multipath coherence of interference, and demonstrate the generalisation of Bohr’s multipath duality relation. Our work provides deep insights into multidimensional quantum physics and benchmarks controllability of integrated photonic quantum technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.