We analyze the light efficiency of a virtual reality (VR) system from display panel to eyebox, and brightness non uniformity caused by the imaging process of the VR lens. Two types of light engines: OLED and LCD are evaluated. For an OLED panel, we optimize the microcavity structure to suppress the image non-uniformity, while keeping a high optical efficiency. For LCD, we propose a 2D patterned prism film to locally modulate the radiation pattern for optimizing the light collection efficiency while minimizing the vignetting effect. The proposed optimization method provides valuable guidelines for designing next-generation display devices for VR headsets.
Virtual reality (VR) systems bring fantastic immersive experiences to users in multiple fields. However, the performance of VR displays is still troubled by several factors, including inadequate resolution, noticeable chromatic aberration, and low optical efficiency. Pancharatnam-Berry phase optical element (PBOE) exhibits several advantages, such as high efficiency, simple fabrication process, compact, and lightweight, which is an excellent candidate for VR systems. We have demonstrated that by using three kinds of PBOEs, the above-mentioned problems can be solved satisfactorily. The first PBOE is PB grating/deflector (PBD), which can deflect the left-handed and the right-handed circularly polarized beams to two opposite directions. Therefore, if we insert a PBD to the VR system and carefully design the deflection angle, it can optically separate each display pixel into two virtual pixels and superimpose them to obtain a higher pixel density. In this way, the pixel per inch (PPI) of the original display can be doubled. The second PBOE is PB lens (PBL). As one kind of diffractive optical lenses, it has an opposite chromatic dispersion to that of a refractive lens. When a PBL with an appropriate focal length is hybridized with a refractive Fresnel lens, the system’s chromatic aberration can be significantly reduced. The third PBOE is multi-domain PB lens. The effective focal length of each domain can be customized independently. This multi-domain PBL can function as a diffractive deflection film in the VR system. If such a diffractive deflection film is cooperated with a directional backlight, the etendue wasting can be reduced prominently, and more than doubled optical efficiency can be achieved in both Fresnel and “Pancake” VR systems. These ultrathin PBOEs will find promising applications in future VR systems
Due to the degenerate spectral response of the human vision system, different sets of primary colors can cover the same color space. Thus, we propose to generate multiple focal planes in head-mounted displays to mitigate the vergence accommodation conflict (VAC) through wavelength multiplexing, making use of another dimension of light as the information channel for cascading 2D images to 3D scenes.
Conventional approaches based on space- or time- multiplexing can provide multifocal functionality but with a significant sacrifice in resolution or frame rate. As a novel alternative, polarization multiplexed methods can avoid these drawbacks, but they can only achieve two focal depths since there are only two orthogonal polarization states. The wavelength multiplexing proposed here is intrinsically free from all the limitations mentioned above.
Firstly, as a proof of concept, we built a dual-focal near-eye display using off-the-shelf optical components. The prototype is designed based on a birdbath architecture with an extra spectral notch filter as the wavelength-sensitive depth separation element. The optical powers for the two wavelength sets are determined by the distance between the reflector and notch filter. Our benchtop demo can generate two focal depths simultaneously, which are located at 1 m and 2 m away from the optical combiner.
Moreover, another compact optical design of a wavelength-multiplexed dual-focus light engine for lightguide type AR displays is also presented. Also, we analyze the implementation of full-color operation and demonstrate an angle insensitive multi-notch filter design based on optical multi-layer coatings. Finally, we discuss practical limitations and potential improvement of the proposed wavelength multiplexing method for overcoming the VAC issue.
We demonstrate an optical chromatic aberration correction method for virtual reality (VR) displays using cost-efficient flat optics. The fabricated ultra-broadband liquid crystal thin-film polymer lens is based on the Pancharatnam-Berry phase and manifests over 97% first-order diffraction efficiency over the display spectrum. By cascading the fabricated polymer lens with the conventional Fresnel VR lens, the lateral color breakup in the near-eye display system can be reduced by more than 10 times. Both optical designs and experimental results are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.