A planarized aluminum alloy interconnect has been developed as an alternative to tungsten plugs for a 0.65 (mu) CMOS technology. Contact resistance can increase with either an inadequate RF sputter clean or titanium that is too thin to reduce the native oxide. Diffusion barrier results show that a minimum amount of titanium nitride, whether deposited conventionally or with collimation, is necessary for low junction leakage and good sort yield. Stacked contacts and vias are supported while via resistance and defect density are improved. Electrical bridging due to silicon residues from AlSiCu can be minimized with metal overetching, but not to the extent of AlCu. Sidewall pitting was observed to be due to galvanic corrosion from copper precipitate formation. Overall yield has been improved along with decreased wafer cost compared to conventional tungsten plug technology.
Conference Committee Involvement (1)
Yield, Reliability, and Failure Analysis in Microelectronics Manufacturing
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.