A novel polymeric nanoparticle was developed between the negatively charged dendrimer phthalocyanine and positively triblock copolymer for the use as an effective photosensitizer in photodynamic therapy. The intracellular uptake of dendrimer phthalocyanines in HeLa cell was significantly enhanced by encapsulated into nanoparticles. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles located induced efficient cell death.
A novel polymeric nanoparticle was developed between the negatively charged dendrimer phthalocyanine and positively triblock copolymer for the use as an effective photosensitizer in photodynamic therapy. The intracellular uptake of dendrimer phthalocyanines in HeLa cell was significantly enhanced by encapsulated into nanoparticles. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles located induced efficient cell death.
Phthalocyanines have attracted great attention because of their applications in material science including electro-optical devices, electrochromic display, and photodynamic therapy (PDT) of cancer. In addition, the Pcs exhibit great flexibility of chemical structure modification enabled by either peripheral substituents or metal ions co-ordination to central cavity of highly conjugated tetrapyrrolic macrocycles. However, because of the hydrophobic nature of the phthalocyanine ring, Pcs have strong tendency to aggregate in solution, which limited their applications. To overcome this problem, the introduction of dendritic wedge to peripheral positions of phthalocyanines can prevent the formation of aggregation to some extent. The preparation procedure involved the modification of the zinc (II) and magnesium (II) phthalocyanines with peripherally dendritic substitutions. The photophysical and photochemical properties of dendritic phthalocyanines were studied by UV/Vis and fluorescence spectroscopic methods. Compared with the magnesium (II) phthalocyanine, the intensity of Q band of zinc (II) phthalocyanine was increased but no obviously position changes was observed. Furthermore, the zinc (II) phthalocyanine exhibited relatively higher fluorescence intensity than the magnesium (II) phthalocyanine. The fluorescence quantum yield and lifetimes of magnesium (II) phthalocyanine was clearly longer than that of zinc (II) phthalocyanine. As the better photosensitizer, the zinc (II) phthalocyanine has higher singlet oxygen quantum yield owning superior performance. This results indicated that the singlet oxygen quantum yield would be effected by the nature of metal ions.
A novel series of poly (aryl benzyl ether) dendrimer silicon phthalocyanines loaded block copolymers
ethoxypoly(ethylene glycol)-poly (lactic-co-glycolic acid) (MPEG-PLGA)were formed. The time-dependent intracellular
uptake of nanoparticles in HUVECs cells increased as they were incorporated into nanoparticles. With its highly
effective selective accumulation on choroidal neovascularization(CNV). This treatment resulted in a efficacious
choroidal neovascularization (CNV) occlusion with minimal unfavorable phototoxicity.
KEYWORDS: Luminescence, Zinc, Dendrimers, Energy transfer, Polymers, Absorption, Absorption spectroscopy, Fluorescence spectroscopy, Spectroscopy, Solar energy
The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.
A novel series of zinc (II) phthalocyanines bearing four poly (aryl benzyl ether) dendritic substituents with carboxylic
acid functionalities (Gn-DPcZn (Gn=n-generation dendrimer, n=1-2)) loaded polymeric micelles (Gn-DPcZn/m) were
formed. The time-dependent intracellular uptake of Gn-DPcZn in RPE cells increased as they were incorporated into
micelles, but inversely correlated with the generation. The photocytoxity of Gn-DPcZn was improved by incorporation
into polymeric micelles and increased with the generation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.