Tetragonal calcium rare-earth aluminates, CaLnAlO4, combine a structural disorder with good thermo-mechanical properties. We report on efficient continuous-wave (CW) and passively Q-switched (PQS) ~2-μm laser operation of a 4 at.% Tm:CaYAlO4 crystal using a compact (6-mm-long) plane-parallel cavity. The pump source was a 791 nm fibercoupled AlGaAs laser diode. The CW output power reached 5.78 W at ~1970 nm with a slope efficiency of 43.6% and a linear laser polarization. Stable PQS operation was achieved using a single-walled carbon nanotube (SWCNT) based transmission-type saturable absorber. The PQS laser generated 2.15 W at ~1945 nm, a record-high average output power for this type of lasers. The best pulse characteristics (energy/duration) were 9.1 μJ/165 ns at a repetition rate of 235 kHz.
In order to solve the problem that the same image has different display results on different monitors, the color characteristic of the display is needed. In this paper, the least square method is used to fit the experimental data,the polynomial regression method is used to build the RGB to CIEXYZ color conversion model of the display, and the accuracy of the model is analyzed. The experimental results show that the accuracy of the cubic polynomials curve model is the highest, the maximum color difference is 5.2862, and the average color difference is 2.6510.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.