MOONS (Multi-Object Optical and Near-infrared Spectrograph) is a third-generation visible and near-infrared spectrograph for the ESO Very Large Telescope, currently nearing the end of the assembly phase. The three channel spectrograph is fed via a fibre positioning module (FPM) which configures the location of 1001 fibres. The robotic fibre positioning units (FPUs) have been jointly developed by the UK Astronomy Technology Centre (UKATC) and MPS Microsystems (MPS) and provide a high-performance multiplexed focal plane with excellent transmission characteristics. An overview of the as-built mechanisms and supporting infrastructure is presented, with details on the extensive calibration process carried out. The integration process to date will be described, including a discussion of key lessons learned.
The Multi Object Optical and Near-infrared Spectrograph (MOONS) instrument is the next generation multi-object spectrograph for the Very Large Telescope (VLT). The instrument combines the high multiplexing capability offered by 1000 optical fibres deployed by individual robotic positioners with a novel spectrograph able to provide both low- and high-resolution spectroscopy simultaneously across the wavelength range 0.64μm - 1.8μm. Powered by the collecting area of the 8-m VLT, MOONS will provide the astronomical community with a world-leading facility able to serve a wide range of Galactic, Extragalactic and Cosmological studies. This paper provides an updated overview of the instrument and its construction progress, reporting on the ongoing integration phase.
The Multi Object Optical and Near-infrared Spectrograph (MOONS) instrument is the next generation multi-object spectrograph for the VLT. This powerful instrument will combine for the first time: the large collecting power of the VLT with a high multipexing capability offered by 1000 optical fibres moved with individual robotic positioners and a novel, very fast spectrograph able to provide both low- and high-resolution spectroscopy simultaneously across the wavelength range 0.64μm - 1.8μm. Such a facility will provide the astronomical community with a powerful, world-leading instrument able to serve a wide range of Galactic, Extragalactic and Cosmological studies. Th final assembly, integration and verification phase of the instrument is now about to start performance testing.
MOONS (Multi-Object Optical and Near-infrared Spectrograph) is a third-generation visible and near-infrared spectrograph for the ESO Very Large Telescope currently under construction. The instrument’s spectroscopic capabilities are multiplexed via a fibre positioning module (FPM) which configures the location of 1001 fibres. The fibre positioning units (FPUs) have been jointly developed by the UK Astronomy Technology Centre (UKATC) and MPS Microsystems (MPS) to optimise instrument efficiency by providing excellent transmission and an open-loop positioning strategy, allowing a tightly packed focal plane to be rapidly reconfigured. The mechanism geometry enables all positions in the focal plane to be observed in conjunction with a companion sky fibre at close separation. A description of the as manufactured design and production process of the FPUs is presented, along with a discussion of the performance proven to date, including achievement of the critical pupil alignment and positional repeatability requirements. An overview of the custom testing rig built to automate the characterisation and calibration process is also presented.
After completion of its final-design review last year, it is full steam ahead for the construction of the MOONS instrument - the next generation multi-object spectrograph for the VLT. This remarkable instrument will combine for the first time: the 8 m collecting power of the VLT, 1000 optical fibres with individual robotic positioners and both medium- and high-resolution spectral coverage acreoss the wavelength range 0.65μm - 1.8 μm. Such a facility will allow a veritable host of Galactic, Extragalactic and Cosmological questions to be addressed. In this paper we will report on the current status of the instrument, details of the early testing of key components and the major milestones towards its delivery to the telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.