The micropallet array system uses a pulsed laser to release pallets tens of microns to hundreds of micrometers in size from a larger array, enabling selective isolation of single cells adherent to the pallets. We characterize the laser-based release of pallets with respect to pallet array and laser parameters. The threshold laser energy required for pallet release increases linearly with the area of the pallet in contact with the underlying glass substrate. The spacing of the pallets within an array as well as the thickness or height of the pallet does not impact the energy required to release a pallet. Delivery of multiple laser pulses decreases the energy/pulse required for pallet release when the pallets were 100 µm or greater on a side. In addition to the square pallets, complex structures such as cantilevers and spirals could be released without damage using the pulsed laser. Identification of the pallet-array variables influencing the energy required for pallet release as well as strategies to minimize this energy will prove critical in optimizing the release of pallets with cells on the arrays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.