Carbon-fiber-reinforced plastic (CFRP) has a higher strength-to-weight ratio and forming flexibility than metals, making it suitable for fabricating lightweight x-ray mirrors. However, CFRP has the disadvantages of print-through and deformation due to moisture absorption, which have prevented its use in optical mirrors. To expand the application of CFRP, we studied the formation of a moisture barrier layer on CFRP substrates. We formed a flattening layer a few micrometers thick on a CFRP substrate, following which we coated the substrate with SiOx as a moisture barrier. The effect of moisture absorption was then evaluated using accelerated aging tests. We found that the diffusivity of the CFRP substrate at 60°C and a relative humidity of 100% was ∼2 × 10 − 6 mm2 h − 1, which is 1/500th that of the barrier-less substrate. In the tests, the moisture absorption rate increased after ∼800 h. As we observed cracks on the flattening layer after 600 h, the rate increase could be associated with these cracks. Considering the damage to the barrier layer, we propose a modified model for the time profile, which is congruent with the observed time profile of the moisture content.