Texture classification has been one of the problem-solving strategies. The feature selection technique is critical for increasing the efficiency of machine learning because it significantly improves the performance of texture classification by removing irrelevant features from the original collection. The majority of methods for selecting features are statistical in nature. Accuracy in database classification is primarily achieved by selecting attributes and simultaneously increasing the classification rate. The task’s primary objective is to select the most significant features from the feature database for execution. We use the cluster-based feature selection method to derive features for statistical and structural approaches. The proposed strategy should be implemented in three stages. To begin, the function can be extracted using the local binary pattern (LBP), the gray level co-occurrence matrix, or the Gabor filter. Following that, a modified K-means clustering method is used to select features using four standard distance measurements: Euclidean, Minkowski, Chebychev, and City Block. Finally, benchmark classifiers such as naive bayes (NB), support vector machine (SVM), and K-nearest neighbor (KNN) were used to effectively compute the classification accuracy of the research. The proposed approach achieves accuracy of 99.4328 for KNN, 98.6654 for NB, and 99.6712 for SVM with the highest classification rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.