This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this paper, we present AspheroCheck UP [1], a highly automated lens testing system based on the well-established AspheroCheck principle. The paraxial centering errors of both optical surfaces are measured in reflection using a focusing autocollimator. This centration measurement is combined with a fully motorized, non-contact distance sensor that measures the aspheric surface run-out. All three measurements can be performed in parallel during a single rotation of the sample, greatly reducing overall measurement time. The sensor can also be used for referencing to outer diameter, flange and/or interlock surfaces and even double-aspheric lenses. A five-axis motorized table enables the automatic alignment of the optical axis of the sample to the rotation axis. This significantly reduces setup time and allows for fully automatic testing without user interaction, ensuring both high measurement accuracy and high repeatability independent of the operator.
A full cycle time of less than 1 minute including loading and unloading is possible, enabling applications in both R&D and production environments. In addition to supporting ISO and Q-type polynomial surfaces, the system supports most other rotationally symmetric surface types, including Fresnel and diffractive surfaces.
This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor’s ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor’s reference axis!
In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor’s reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.
Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.
In this contribution, we will present a system for the automated alignment of optical surfaces for the high-throughput manufacturing of cemented doublets (and triplets) with optimized imaging performance. First of all, different concepts for the alignment of doublets etc. are discussed. Standard methods for cementing evaluate mechanical features, such as the outer barrel of one element as reference axis. Using this procedure the optical performance of the assembly that can be achieved is limited by imperfections in the collinearity of the element’s barrel axis and its optical axis. Instead, using the optical axis of the bottom element as target axis opens up perspectives for the production of multiplets with perfect symmetric imaging performance. For this concept, all three center of curvature positions of the optical surfaces are measured. Then, the top surface is aligned to the bottom element's optical axis using high-precision actuators.
In order to increase the throughput of this procedure, the system is equipped with a novel measurement head that acquires autocollimation images of all three surfaces of a doublet at the same time. Thus, the positions of all surfaces are measured simultaneously during just a single rotation, avoiding both additional rotations and focus movements.
Using this approach, cycle times can significantly be reduced from an average of 1 min to less than 10 seconds (w/o curing time). The system is reconfigurable in order to support a wide range of sample designs and enables cementing of high quality optics with centering errors below 2 μm.
We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens’ surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm.
The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.
View contact details
No SPIE Account? Create one