PurposeOptical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for detection of retinal diseases, as well as other medical domains. The noise in OCT images presents a great challenge as it hinders the clinician’s ability to diagnosis in extensive detail.ApproachIn this work, a region-based, deep-learning, denoising framework is proposed for adaptive cleaning of noisy OCT-acquired images. The core of the framework is a hybrid deep-learning model named transformer enhanced autoencoder rendering (TEAR). Attention gates are utilized to ensure focus on denoising the foreground and to remove the background. TEAR is designed to remove the different types of noise artifacts commonly present in OCT images and to enhance the visual quality.ResultsExtensive quantitative evaluations are performed to evaluate the performance of TEAR and compare it against both deep-learning and traditional state-of-the-art denoising algorithms. The proposed method improved the peak signal-to-noise ratio to 27.9 dB, CNR to 6.3 dB, SSIM to 0.9, and equivalent number of looks to 120.8 dB for a dental dataset. For a retinal dataset, the performance metrics in the same sequence are: 24.6, 14.2, 0.64, and 1038.7 dB, respectively.ConclusionsThe results show that the approach verifiably removes speckle noise and achieves superior quality over several well-known denoisers.
Combined intravascular ultrasound-optical coherence tomography (IVUS-OCT) enables more accurate coronary plaque tissue classification compared to single modality systems. Automated solutions are needed to that take advantage of information from both modalities to speed such analysis. This study aimed to train and validate a deep learning (DL) model for tissue classification in combined IVUS-OCT images. Coronary segments from 8 arteries from cadaveric human hearts were studied with the Novasight Hybrid imaging catheter. IVUS-OCT images were matched with histological sections and tissue types annotated. These regions of interest were used train and test a DL-classifier for plaque composition (949 matched histological and IVUS-OCT frames from 8 patients for training, 306 frames from 2 patients for testing). The accuracy of the classifier for regional classification was 78.8% suggesting that the trained DL-model is capable of accurate tissue type classification in combined IVUS-OCT images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.