Traditional optical imaging systems are designed for imaging with a single contrast mechanism, and therefore can interrogate only a single neurophysiologic variable. However, the biological complexity underlying neurophysiological function and its alteration in neurodegenerative diseases, requires the simultaneous interrogation of multiple neurophysiologic variables to arrive at a better understanding. Today’s multicontrast optical imaging systems satisfy this need, but suffer from some inherent limitations. Owing to the need to integrate multiple contrast mechanisms, these imaging systems tend to be benchtop-based and unportable, often requiring animals to be anesthetized, custom built and expensive. This limits their widespread adoption. Miniaturization, although technically challenging, remains a potential solution to these limitations. To address this unmet need, here we present the design considerations and practical guidelines for building inexpensive, miniaturized, and portable multicontrast optical neuroimaging systems that allow comprehensive interrogation of brain function in freely behaving rodents. We then showcase an example tri-contrast miniature neuroimaging system and demonstrate the implementation of our guidelines. We conclude by demonstrating the utility of such a miniature multicontrast neuroimaging system by interrogating in an awake rodent the tumor extent, angiogenic vascular sprouting, flow establishment in the newly formed vessels, as well as anomalies in resting-state microvascular fluctuations in a preclinical model of brain tumor progression.
Monitoring brain activities in awake and freely moving status is very important in physiological and pathological studies
of brain functions. In this study, we developed a new standalone micro-device combining electrophysiology and optical
imaging for monitoring the cerebral blood flow and neural activities with more feasibility for freely moving animals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.