Laser plasma accelerators produce ultra-short, low emittance electron bunches that show potential for use in multistage colliders or for seeding free electron lasers. However, to optimize these novel accelerators for such applications, new diagnostics for micron-scale beams must be developed. In this paper we present single shot coherent optical transition radiation diagnostics that measure spatial and momentum distributions of microbunched high energy electron populations at the exit of a laser plasma accelerator. We show correspondence between the measured position and momentum of the electron beamlets as well as transverse distribution reconstructions of the coherent portion of the beam on a single shot at a variety of wavelengths. Finally, we propose a scheme for a full three-dimensional reconstruction of an electron bunch through coherent transition radiation analysis.
We report the generation of a two-color terawatt (TW) laser by the insertion of a three-stage barium nitrate Raman shifter and amplifier system into a conventional Ti:sapphire chirped-pulse amplification system. The Raman subsystem produces a pulse that is shifted from 800 to 873 nm and is amplified and compressed to TW scales (140 mJ and 140 fs) and then recombined with the 45-TW 800-nm fundamental pulse.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.