Hexagonal boron nitride (h-BN), a two-dimensional (2D) ultrawide-bandgap semiconductor, has seen fast progress in the last decade and attracted tremendous attention and intensive investigation for its association with III-Nitride heterostructures. More specifically, the weak van der Waals interactions between the III-Nitrides heterostructures and 2D h-BN layers is a major enabler because it allows a mechanical release and transfer of freestanding membranes of III-Nitrides heterostructures to foreign substrates which open new pathways for III-Nitride heterogeneous integration and flexible devices. In this talk we will present the results of our work on LEDs grown on h-BN and their transfer to foreign substrates.
Giant room temperature persistent photoconductivity in hexagonal boron nitride under UVC irradiation has been demonstrated. Scanning lasers dots on sample surface at two different wavelengths (213 and 266 nm) have been used to induce such effect, the former being more efficient. Conductivity has been increased by 6 orders of magnitude upon illumination. Such increase persists significantly for at least 6 months. Decrease of photoinduced current has been shown to be 10% more important for samples irradiated under vacuum than for those irradiated under atmospheric pressure. Type of photoinduced carriers were investigated using p-hBN/n-AlGaN junctions through C/V measurements. P-type carriers are believed to be generated by 213 nm illumination whereas 266 nm laser is supposed to trigger n-type carriers.
We present a critical study of LEDs on h-BN compared to the conventional LEDs on sapphire from materials characterizations, device fabrication to the device performances measurements performed before and after liftoff and transfer with and without intermediary adhesion layer to arbitrary substrates
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.