Implementation of some signal processing algorithms on hardware has generally an advantage of efficiently implementation of complex processing. However, it still has some difficulties of developing natural optical phenomena because of various trade-off relation. Since these difficulties do not always allow a photonic hardware to emulate such an intermediary processing, further little assistances are necessary to complete the gap bridge and various machinelearning would play a significant role there. We discuss machine-learning-aided photonic hardware implementation incorporating natural optical phenomena with an example of a spectroscopic inspection technique for low cost, high speed, large data, and high spectral resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.