Image transmission holds a major share in data communication, and thus secure image transmission is currently a challenging domain of research. A secure image transmission scheme is proposed that physically transmits the encrypted image employing visual cryptography scheme (VCS). During physical transmission, the meaningless shares may attract curious hackers and if captured and stacked, the secret may be revealed. Moreover, the increase in transmission overhead due to multiple share images resulted from a single secret image after encryption is another concern regarding the physical implementation of VCS. Focusing on both observations, vector quantization (VQ) is used to encode as well as to compress each of the shares before transmission. To utilize VQ, its two parameters, cell width and dimension of grid, are needed to be optimized for various kind of images without compromising the randomness property of the shares. Hence, a particle swarm optimization-guided VQ is proposed, and furthermore, a multilayer perceptron in conjunction with an autoencoder are also trained in synchronism with that to automatically obtain the optimal VQ for each image type during the transmission. The proposed scheme is successfully implemented with different types of images for secure physical transmission with a 62.8% data volume reduction and 98.07% image quality retrieval.
This paper proposes a visual cryptography scheme (VCS) based on quantum signal processing (QSP). VCS is an image encryption technique that is very simple in formulation and is secure. In (k,n)-VCS, a secret binary image is encoded into n share images and minimum k shares are needed to decrypt the secret image. The efforts to encrypt a grayscale image are few in number and the majority are related to grayscale to binary conversion. Thus, a generalized approach of encryption for all types of images, i.e., binary, gray, and color is needed. Here, a generic VCS is proposed based on QSP where all types of images can be encrypted without pixel expansion along with a smoothing technique to enhance the quality of the decrypted image. The proposed scheme is tested and compared for benchmark images, and the result shows the effectiveness of the scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.