Semiconductor nanocrystals, also called quantum dots (QDs), have been proven as powerful fluorescent probes. This paper presents a new method to evaluate the retention efficiency of nanofiltration membranes using sub-10 nm fluorescent QDs in organic solvents. Two different Cd-based QDs with uniformed sizes (nominal 8 nm and 4 nm) were used as challenge particles in this study. Fluorescence spectrophotometer was used as a detector to measure the QDs concentration before and after filtration. High resolution transmission electron microscope (HRTEM) and dynamic light scattering (DLS) were employed for measuring particle size and size distribution, which revealed the QDs used in this study were with a narrow size distribution. Three different types of Entegris UPE membranes were tested by using this method. The filters were rated at 3 nm, 5 nm and 10 nm using bubble-point extrapolative methods were further confirmed by the QDs retention tests in solvents.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.