The results of studies of influence of oil on vegetative biological objects using Raman spectroscopy method are presented. The characteristics of Raman spectra of plants growing under the influence of oil fractions were obtained. The main changes were detected at 605 cm-1 , 840 cm-1 , 2120 cm-1 wavenumbers, which is associated with increasing concentration of bromine, aromatic carbons and methane in plant leaves.
The results of studies on the effects of heavy metals on aquatic plants using the method of Raman spectroscopy (RS). Introduced optical coefficient, reflecting changes in chlorophyll and carotinoids in relation to the hemicellulose under the influence of heavy metals, defined as the ratio of the intensities of the RS on the wavenumbers 1547 cm-1, 1522 cm-1 to the intensity of the line 1734 cm-1. Was monitored waters of the Samara region on the basis of this coefficient.
In this research carried out control of heavy metals on the territory of a large aviation company using an optical method of control. As the biological indicators of heavy metals were used the leaves of plants. As a result of research was performed bivariate analysis entered the optical coefficients at wavenumbers 1150 cm-1, 1547 cm-1 and 1600 cm-1, on the basis of which the identified zones aircraft factory exposed most contaminated with manganese and copper.
The research of results are confirmed by chemical analysis of the soil.
In this work the results of research of heavy metals impact on aquatic plants with Raman spectroscopy are shown. The peculiarity of Raman spectrum under the influence of heavy metals has been experimentally established. Optical coefficient, determining heavy metals impact on aquatic plants was introduced. It was defined as correlation of Raman intensity values on wave numbers 1547 cm-1, 1522cm-1 to intensity band value at 1600 cm-1. Microscopic analysis of aquatic plants under the influence of heavy metals has been conducted.
One of the complicating factors for environmental situation is degassing of land. The high concentrations of hydrogen near the bearing metal structures can weaken them as a result of embrittlement. Therefore, the study problems of hydrogen concentration in the soil and hydrogen influence on living organisms are relevant. However, the exit of deep hydrogen has a volley character. This problem can be solved by the plant bioobjects as the local integral indicators. The dandelion (Taráxacum) was selected as the research object. The collection of objects was produced from the degassing zone and a zone without degassing. Selection of degassing zone was driven by information that was provided by the Volga branch of the Institute of Geology and Exploration of fossil fuels of the Samara Region. Experimental studies of the hydrogen influence on the optical properties of plants were conducted using a complex of Raman spectroscopy and confocal microscopy. Laboratory and field research were conducted. Raman spectroscopy was implemented using the experimental stand that includes a radiation source, a fiber system for collect and feed of radiation and SR-303i spectrophotometer with integrated digital camera ANDOR DV-420A-OE (1024 * 256). The experimental stand allows to work in the spectral range of 180 - 1200 nm and with a registration accuracy about 0.2 nm. A detailed analysis of the structural changes in plant cells under the hydrogen influence was performed by confocal microscopy.
Experimental study of the hydrogen influence on the optical characteristics of plants by Raman spectroscopy was performed. Research revealed the amplitude increase of Raman intensity in wavenumbers 1130 cm-1 and 1495 cm-1 for plants under hydrogen influence. The structural changes in the plant leafs were identified by fluorescence confocal microscopy. Experimental study of kinetic processes of plant tissue has shown the emergence of plant reaction to external impact (hydrogen). In turn, the plant response manifested to Raman intensity increase and leads to increase of stem thickness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.